首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A comparative kinetic analysis of the enzymatic activities of one-chain and two-chain tissue-type plasminogen activator (t-PA) demonstrates that two-chain t-PA catalyzes the hydrolysis of the peptide substrate D-Val-Leu-Arg-pNA about 4-fold more effectively than one-chain t-PA. The difference is accounted for almost entirely by a corresponding difference is the kcat values of the enzymes, whereas the Km values are similar. The amidolytic activity of two-chain t-PA is not enhanced by intact or partially plasmin-degraded fibrin. In contrast, the activity of one-chain t-PA is stimulated up to 3.7-fold by intact fibrin and up to 4.7-fold by plasmin-degraded fibrin (fibrin X-fragment). The stimulatory effects are realized via increases in the kcat values. It appears thus that in the presence of fibrin the intrinsically inferior catalytic properties of one-chain t-PA become similar to the properties of two-chain t-PA. The dependency of the activity of one-chain t-PA on the concentration of fibrin monomer is consistent with a single association site of both proteins and an association constant of Kass = 6.25 x 10(6) l/mol. Stimulation of one-chain t-PA by plasmin-degraded fibrin is more complex and appears to involve two different binding sites with association constants of Kass = 0.67 x 10(9) l/mol and Kass = 3.85 x 10(6) l/mol, respectively. The stimulatory effects of fibrin and partially plasmin-degraded fibrin on one-chain t-PA are suppressed by epsilon-aminocaproic acid and by a monoclonal antibody directed against the lysine binding site of t-PA. The latter findings support the notion that fibrin activation of one-chain t-PA is mediated by the lysine binding site on kringel domains of the enzyme.  相似文献   

2.
The effects of 4 monoclonal antibodies against human tissue-type plasminogen activator (t-PA) on binding of t-PA to lysine, fibrin, and heparin, and on fibrin-mediated activation of one-chain t-PA-amidolytic activity were investigated. The association constants of the antibodies were determined in a direct assay to be equal to 0.125 l/nmol, 0.225 l/nmol, 0.4 l/nmol, and 0.5 l/nmol for mAB 5, mAB 16, mAB 25, and mAB 31, respectively. All 4 monoclonal antibodies inhibited binding of intact t-PA to lysine-Sepharose and fibrin, and they suppressed fibrin-mediated activation of one-chain t-PA-amidolytic activity. Binding analysis demonstrated that mAB 25 inhibited t-PA binding to lysine-Sepharose and to fibrin as well as fibrin-mediated enhancement of one-chain t-PA-amidolytic activity in a competitive manner with inhibitor constants of 5 nmol/l, 3 nmol/l and 10 nmol/l, respectively. It was also shown that free lysine counteracts the association of t-PA with the antibodies. Binding of t-PA to heparin is only moderately affected by the 4 antibodies. Since t-PA possesses two homologous kringle domains which contain fibrin (lysine) binding sites, the results underline the importance of a lysine binding site for fibrin binding by intact t-PA and show that the binding of the enzyme to fibrin and lysine is mediated by the same binding site of a kringle domain. The parallel effects of antibodies on fibrin binding and on fibrin-mediated enhancement of one-chain t-PA amidolytic activity proves that the site of fibrin binding is identical with the site of fibrin activation. The binding site of heparin apparently differs from lysine and fibrin binding sites.  相似文献   

3.
A one-chain recombinant tissue-type plasminogen activator (EC 2.4.31.-) (tPA) analogue was constructed in which Arg-275 of the activation site was changed to Gly by site-directed mutagenesis. This analogue, tPA-Gly275, was very resistant to plasmin (EC 2.4.21.5) cleavage. It has been used to gain information about the activity of the uncleaved one-chain tPA form, also when plasmin is generated as a result of a plasminogen activation reaction. The amidolytic activity of tPA-Gly275 with less than Glu-Gly-Arg-pNA was investigated and compared to that of one-chain and two-chain wild-type recombinant tPA. A small but significant intrinsic amidolytic activity was observed with the analogue as well as the wild-type one-chain tPA form. However, it was much lower than that of two-chain tPA. Polymerised fibrin enhanced the amidolytic activity of both one-chain tPA forms but not of two-chain tPA. Measurements of the plasminogen activation kinetics in the absence of fibrin revealed that tPA-Gly275 possessed a significant intrinsic activity. However, it was 30-fold lower than that of two-chain tPA. Addition of polymerised fibrin profoundly enhanced the plasminogen activation rate of both tPA-Gly275 and wild-type one- and two-chain tPA to approximately the same maximal level. The results were interpreted to mean that fibrin binding can induce an activated state of the intact tPA one-chain form.  相似文献   

4.
Activation of the zymogen form of a serine protease is associated with a conformational change that follows proteolysis at a specific site. Tissue-type plasminogen activator (t-PA) is homologous to mammalian serine proteases and contains an apparent activation cleavage site at arginine-275. To clarify the functional consequences of cleavage at arginine-275 of t-PA, site-specific mutagenesis was performed to convert arginine-275 to a glutamic acid. The mutant enzyme (designated Arg-275----Glu t-PA) could be converted to the two-chain form by Staphylococcus aureus V8 protease but not by plasmin. The one-chain form was 8 times less active against the tripeptide substrate H-D-isoleucyl-L-prolyl-L-arginine-p-nitroanilide (S-2288), and the ability of the enzyme to activate plasminogen in the absence of fibrinogen was reduced 20-50 times compared to the two-chain form. In contrast, one-chain Arg-275----Glu t-PA has equal activity to the two-chain form when assayed in the presence of physiological levels of fibrinogen and plasminogen. Fibrin bound significantly more of the one-chain form of t-PA than the two-chain form for both the wild-type and mutated enzymes. One- and two-chain forms of the wild-type and mutated plasminogen activators slowly formed complexes with plasma protease inhibitors, although the one-chain forms showed decreased complex formation with alpha 2-macroglobulin. The one-chain form of t-PA therefore is fully functional under physiologic conditions and has an increased fibrin binding compared to the two-chain form.  相似文献   

5.
Modification of glutamic and aspartic acid residues of tissue-type plasminogen activator (t-PA) with 1-ethyl-3(3-dimethyl-aminopropyl)-carbodiimide leads to a decrease in affinity for lysine and fibrin, to a decrease of plasminogen activation activity in the presence of a fibrin mimic, but leaves amidolytic activity and plasminogen activation without fibrin mimic unaffected. Experiments with kringle-2 ligands and a deletion mutant of t-PA (K2P) suggests that glutamic or aspartic acid residues in K2 of t-PA are involved in stimulation of activity, lysine binding and fibrin binding. Mutant t-PA molecules were constructed by site-directed mutagenesis in which one or two of the five aspartic or glutamic acid residues in K2 were changed to asparagine or glutamine respectively. Mutation of Asp236 and/or Asp238 leads to t-PA molecules with 3- to 4-fold lower specific activity in the presence of fibrin mimic and having no detectable affinity for lysine analogs. However, fibrin binding was not influenced. Mutation of Glu254 also leads to a 3- to 4-fold lower activity, but to a much smaller reduction of lysine or fibrin binding. Residues Asp236 and Asp238 are both essential for binding to lysine derivatives, while Glu254 might be involved but is not essential. Residues Asp236, Asp238 and Glu254 are all three involved in stimulation of activity. Remarkably, mutation of residues Asp236 and/or Asp238 appears not to influence fibrin binding of t-PA whereas that of Glu254 does.  相似文献   

6.
To study structure/function relationships of tissue plasminogen activator (t-PA) activity, one of the simplest modified t-PA structures to activate plasminogen in a fibrin-dependent manner was obtained by constructing an expression vector that deleted amino acid residues 4-175 from the full-length sequence of t-PA. The expression plasmid was introduced into a Syrian hamster cell line, and stable recombinant transformants, producing high levels of the modified plasminogen activator, were isolated. The resulting molecule, mt-PA-6, comprising the second kringle and serine protease domains of t-PA, produced a doublet of plasminogen activator activity having molecular masses of 40 and 42 kDa. The one-chain mt-PA-6 produced by cultured Syrian hamster cells was purified in high yield by affinity and size exclusion chromatography. The purified mt-PA-6 displayed the same two types of microheterogeneity observed for t-PA. NH2-terminal amino acid sequencing demonstrated that one-chain mt-PA-6 existed in both a GAR and a des-GAR form. Purified mt-PA-6 also existed in two glycosylation forms that accounted for the 40- and 42-kDa doublet of activity produced by the cultured Syrian hamster cells. Separation of these two forms by hydrophobic interaction chromatography and subsequent tryptic peptide mapping demonstrated that both forms contained N-linked glycosylation at Asn448; in addition, some mt-PA-6 molecules were also glycosylated at Asn184. Plasmin treatment of one-chain mt-PA-6 converted it to a two-chain molecule by cleavage of the Arg275-Ile276 bond. This two-chain mt-PA-6, like t-PA, had increased amidolytic activity. The fibrinolytic specific activities of the one- and two-chain forms of mt-PA-6 were similar and twice that of t-PA. The plasminogen activator activity of one-chain mt-PA-6 was enhanced greater than 80-fold by CNBr fragments of fibrinogen, and the one-chain enzyme lysed human clots in vitro in a dose-dependent manner. The ability to produce and purify a structurally simple plasminogen activator with desirable fibrinolytic properties may aid in the development of a superior thrombolytic agent for the treatment of acute myocardial infarction.  相似文献   

7.
Tissue plasminogen activator was treated with Sepharose-bound trypsin or chymotrypsin. Trypsin rapidly converted the one-chain activator to the two-chain form. This caused a marked increase in the amidolytic activity, while plasminogen activation initially increased but then decreased again. SDS/polyacrylamide gel electrophoresis in combination with [3H]diisopropylfluorophosphate active-site labeling revealed that after the conversion to the two-chain activator a minor cleavage occurred in the B chain, while the A chain was substantially degraded. Chymotrypsin caused a marked decrease in both amidolytic activity and plasminogen activation. SDS/polyacrylamide gel electrophoresis under reducing conditions revealed that two pairs of new bands had appeared, with Mr or about 50,000/52,000 and 17,000/20,000 respectively. N-terminal sequence analysis identified cleavage sites at peptide bonds 420-421 and 423-424. These bonds are located in a region of the activator which is homologues to the segments of trypsin and chymotrypsin, where autocatalytic cleavages occur during their activations. However, treatment of two-chain activator with chymotrypsin had markedly less effect on plasminogen activation and amidolytic activity. By treatment of samples of chymotrypsin-digested one-chain activator with plasmin, amidolytic activity could be largely restored. Thus, chymotrypsin may, by cleaving bonds 420-421 and 423-424, convert the active one-chain activator into an 'inactive' zymogen, which is again 'activated' by plasmin cleavage.  相似文献   

8.
Two murine monoclonal antibodies (MA-2G6 and MA-1C8), secreted by hybridomas obtained by fusion of myeloma cells with spleen cells from mice immunized with human tissue-type plasminogen activator (t-PA), inhibited the activity of t-PA on fibrin plates. MA-2G6 inhibited the amidolytic activity of t-PA and did not react with t-PA in which the active-site serine was blocked with diisopropylfluorophosphate nor with t-PA in which the active-site histidine was alkylated by reaction with D-Ile-Pro-Arg-CH2Cl. This indicated that MA-2G6 is directed against an epitope covering the active site of t-PA. MA-1C8 did not inhibit the amidolytic activity of t-PA, but abolished both the binding of t-PA to fibrin and the stimulatory effect of fibrin on the activation of plasminogen by t-PA. Thus MA-1C8 is directed against an epitope which covers the fibrin-binding site of t-PA. The A and B chains of partially reduced two-chain t-PA were separated by immunoadsorption on immobilized MA-1C8 and MA-2G6. The purified B chain reacted with MA-2G6 but not with MA-1C8 and activated plasminogen following Michaelis-Menten kinetics with kinetic constants similar to those of intact t-PA (Km = 100 microM and kcat = 0.02 s-1). However, fibrin or CNBr-digested fibrinogen did not stimulate the activation of plasminogen by the B chain. The purified A chain reacted with MA-1C8 but not with MA-2G6. It bound to fibrin with an affinity similar to that of intact t-PA but did not activate plasminogen. It is concluded that the active center of t-PA is located in the B chain and the fibrin-binding site in the A-chain. Both functional domains are required for the regulation by fibrin of the t-PA-mediated activation of plasminogen.  相似文献   

9.
K Shimaya  H Sumi  M Maruyama  H Mihara 《Enzyme》1992,46(4-5):204-212
Anaphylactic shock was induced in rabbits by injecting bovine serum albumin (BSA) as an antigen. Measurements of the enzyme activities in the fibrinolytic system confirmed that a rapid and strong increase of plasminogen activator (PA) was induced during anaphylaxis. The euglobulin fibrinolytic activity (EFA) as estimated by the plasminogen-rich fibrin plate method rose significantly, peaking at 15 min after the BSA injection (when the arterial pressure was minimum). However, EFA was not detected by the plasminogen-poor fibrin plate method. The tissue-type PA (t-PA) activity using the natural substrate plasminogen increased significantly with a peak at 15 min. The amidolytic activity also simultaneously increased significantly using the t-PA substrate, H-D-Ile-Pro-Arg-pNA. The plasminogen activator inhibitor (PAI) activity remained at baseline levels until 30 min, but rose fourfold at 90 min. The main plasma fibrinolytic enzyme which increased in anaphylaxis was proved by zymography to be t-PA with a molecular weight (MW) of 69,000.  相似文献   

10.
Mutations were directed to specific regions of the human tissue-type plasminogen activator (t-PA) gene in an effort to better define structure-function relationships of the enzyme. Three types of modifications were effected by in vitro mutagenesis: elimination of glycosylation sites; substitutions of amino acids at the cleavage site for conversion of single-chain t-PA to two-chain t-PA; and truncations of the N- and C-termini. Thirteen variants were purified from permanent CHO cell lines and analyzed for specific activity, fibrin stimulation, fibrin binding, inhibition by plasminogen activator inhibitor-2 (PAI-2) and half-life. The results of these analyses are: (i) variants with carbohydrate-depleted kringle domains possessed higher specific activities than wild-type t-PA; (ii) a cleavage site variant substituted at Arg275 with Gly had greatly reduced specific activity; (iii) two variants substituted at Lys277 exhibited altered interactions with PAI-2; (iv) the variant with a truncated C-terminus had reduced activity in the absence of fibrin; and (v) no variants had significantly altered half-lives. In order to test the effects of combining mutations, four additional variants were produced. Each combination variant retained at least one of the altered properties observed in the original variants, and in three of the variants the diverse properties were additive.  相似文献   

11.
TNK-tissue plasminogen activator (TNK-t-PA), a bioengineered variant of tissue-type plasminogen activator (t-PA), has a longer half-life than t-PA because the glycosylation site at amino acid 117 (N117Q, abbreviated N) has been shifted to amino acid 103 (T103N, abbreviated T) and is resistant to inactivation by plasminogen activator inhibitor 1 because of a tetra-alanine substitution in the protease domain (K296A/H297A/R298A/R299A, abbreviated K). TNK-t-PA is more fibrin-specific than t-PA for reasons that are poorly understood. Previously, we demonstrated that the fibrin specificity of t-PA is compromised because t-PA binds to (DD)E, the major degradation product of cross-linked fibrin, with an affinity similar to that for fibrin. To investigate the enhanced fibrin specificity of TNK-t-PA, we compared the kinetics of plasminogen activation for t-PA, TNK-, T-, K-, TK-, and NK-t-PA in the presence of fibrin, (DD)E or fibrinogen. Although the activators have similar catalytic efficiencies in the presence of fibrin, the catalytic efficiency of TNK-t-PA is 15-fold lower than that for t-PA in the presence of (DD)E or fibrinogen. The T and K mutations combine to produce this reduction via distinct mechanisms because T-containing variants have a higher K(M), whereas K-containing variants have a lower k(cat) than t-PA. These results are supported by data indicating that T-containing variants bind (DD)E and fibrinogen with lower affinities than t-PA, whereas the K and N mutations have no effect on binding. Reduced efficiency of plasminogen activation in the presence of (DD)E and fibrinogen but equivalent efficiency in the presence of fibrin explain why TNK-t-PA is more fibrin-specific than t-PA.  相似文献   

12.
Tissue-type plasminogen activator (t-PA), the serine protease responsible for catalyzing the production of plasmin from plasminogen at the site of blood clots, is synthesized as a single-chain polypeptide precursor. Proteolytic cleavage at the C-terminal side of Arg275 generates a two-chain form of the enzyme whose subunits are held together by a single disulfide bond. We have measured the activities of both forms of the wild-type enzyme, as well as that of a mutant enzyme (Arg275----Gly), created by oligonucleotide-directed mutagenesis, that cannot be cleaved into a two-chain form. Both types of single-chain t-PAs are enzymatically active and exhibit identical Vmax and Km values when assayed with synthetic peptide substrates, indicating that the single amino acid change had no effect on the amidolytic activity of the enzyme. However, cleavage of wild-type t-PA into the two-chain form results in increased activity both on a peptide substrate and on the natural substrates Lys- and Glu-plasminogen in the absence or presence of stimulation by soluble fibrin. The enhanced activity is due to a 3-5-fold increase in the Vmax of the cleaved enzyme, rather than to any change in the Km values for the various substrates. During incubation with plasminogen, the single-chain form of wild-type t-PA is converted to the two-chain form by plasmin generated during the reaction. This conversion, from the less active form of the enzyme, results in a reaction that displays biphasic kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Trinitrobenzyl alkylation of poly(D-lysine) provides a novel powerful stimulator of tissue-type plasminogen activator. Its stimulatory effect on plasminogen activation is far greater than that of the original poly(D-lysine), and even surpasses that of fibrin. Its effect on plasmin-catalysed modification of both tissue-type plasminogen activator (t-PA) and native (Glu-1-) plasminogen are also investigated. Cleavage of one-chain t-PA to its two-chain form is monitored by measuring the increase in amidolytic activity which accompanies this transformation. Presupposing apparent first-order reaction kinetics, a theory is developed by which the rate constant, kcat/Km = 1.0 X 10(6) M-1 X s-1 of plasmin cleavage of one-chain t-PA can be calculated. Plasmin-catalysed transformation of 125I-labelled Glu-1- to Lys-77-plasminogen is quantified following separation by polyacrylamide gel electrophoresis at pH 3.2. A rate constant, kcat/Km = 4.4 X 10(3) M-1 X s-1 is obtained for the reaction between plasmin and Glu-1-plasminogen in the presence of 1 mM trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Both of the above plasmin-catalysed reactions are strongly enhanced by trinitrobenzoylated poly(D-lysine). The mechanism of action of this stimulator is elucidated by studying its binding to both activator and plasmin(ogen), and by direct comparison of the results with measurements of plasminogen activation kinetics in the presence of the stimulator. Binding studies are performed exploiting the observation that an insoluble yellow complex is formed between plasminogen and modified poly(D-lysine). Protein-polymer interactions are also studied with solubilised components in an aqueous two-phase partition system containing dextran and poly(ethylene glycol). The rate enhancement of plasminogen activation is found to be closely correlated to the association of plasminogen to the stimulator. It is proposed that the stimulator effects of this simple polymer on the enzymatic activities of both plasminogen activator and plasmin are brought about by association of the proteinase and its substrate to a common matrix. Similarities between the action of the artificial and the natural stimulator (fibrin) are stressed. These properties of trinitrobenzoylated poly(D-lysine) makes it useful as a model for the study of the regulatory mechanism of the fibrinolytic process at the molecular level.  相似文献   

14.
The kringle-2 domain (residues 176-262) of tissue-type plasminogen activator (t-PA) was cloned and expressed in Escherichia coli. The recombinant peptide, which concentrated in cytoplasmic inclusion bodies, was isolated, solubilized, chemically refolded, and purified by affinity chromatography on lysine-Sepharose to apparent homogeneity. [35S]Cysteine-methionine-labeled polypeptide was used to study the interactions of kringle-2 with lysine, fibrin, and plasminogen activator inhibitor-1. The kringle-2 domain bound to lysine-Sepharose and to preformed fibrin with a Kd = 104 +/- 6.2 microM (0.86 +/- 0.012 binding site) and a Kd = 4.2 +/- 1.05 microM (0.80 +/- 0.081 binding site), respectively. Competition experiments and direct binding studies showed that the kringle-2 domain is required for the formation of the ternary t-PA-plasminogen-intact fibrin complex and that the association between the t-PA kringle-2 domain and fibrin does not require plasmin degradation of fibrin and exposure of new COOH-terminal lysine residues. We also observed that kringle-2 forms a complex with highly purified guanidine-activated plasminogen activator inhibitor-1, dissociable by 0.2 M epsilon-aminocaproic acid. The kringle-2 polypeptide significantly inhibited tissue plasminogen activator/plasminogen activator inhibitor-1 interaction. The kringle-2 domain bound to plasminogen activator inhibitor-1 in a specific and saturable manner with a Kd = 0.51 +/- 0.055 microM (0.35 +/- 0.026 binding site). Therefore, the t-PA kringle-2 domain is important for the interaction of t-PA not only with fibrin, but also with plasminogen activator inhibitor-1 and thus represents a key structure in the regulation of fibrinolysis.  相似文献   

15.
The tetra-alanine substitution variant KHRR 296-299 AAAA of tissue-type plasminogen activator (t-PA) was previously shown to have enhanced fibrin specificity and enhanced activity in the presence of fibrin compared with the wild-type form of the molecule. The structural requirements for these alterations in enzymatic activity were investigated by constructing several amino acid substitution variants at each of the positions from 296 to 299 and evaluating their activities under a variety of conditions. Effects on plasminogen activator activity were common among the point mutants at positions 296-299; nearly all had a phenotype similar to the KHRR 296-299 AAAA variant. The greatest effects on enzymatic function were found with multiple substitution variants, but some single charge reversals and proline substitutions had substantial effects. The enhanced fibrin specificity of KHRR 296-299 AAAA t-PA results in less fibrinogenolysis than seen with wild-type t-PA. Approximately four times greater concentration of KHRR 296-299 AAAA compared with wild-type t-PA was required to consume 50% of the fibrinogen in human plasma.  相似文献   

16.
K C Robbins  I G Boreisha 《Biochemistry》1987,26(15):4661-4667
A covalent hybrid plasminogen activator was prepared from the sulfhydryl forms of the NH2-terminal heavy (A) chain of human plasmin (PlnA) containing the fibrin-binding domain and the COOH-terminal B chain of tissue plasminogen activator (t-PAB) containing the catalytic domain. The sulfhydryl form of PlnA [PlnA(SH)2] was isolated from reduced Lys-2-plasmin on an L-lysine-substituted Sepharose column, and the sulfhydryl form of t-PAB [t-PAB(SH)] was prepared from reduced two-chain tissue plasminogen activator (t-PA) by removing the tissue plasminogen activator NH2-terminal A chain (t-PAA) on an L-lysine-substituted Sepharose column from the chain mixture. The specific plasminogen activator activity, with soluble fibrin, of the isolated t-PAB(SH) chain was determined to be 62,700 international units (IU)/mg of protein, about 13% of the specific plasminogen activator activity of the parent t-PA. The PlnA(SH)2 and the t-PAB(SH) chains were mixed in a 1:1 molar ratio, and hybridization (reoxidation) was allowed to proceed by first dialyzing out the reducing agent at 4 degrees C and then concentrating the mixture. The time for maximum hybridization, or formation of the covalent hybrid activator, was 6 days, as determined by both specific plasminogen activator activity, with soluble fibrin, and specific amidolytic activity; sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the continual formation of an Mr approximately 92,000 hybrid. The covalent PlnA-t-PAB hybrid activator was isolated from the 6-day hybridization mixture by a two-step affinity chromatography method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
D L Higgins  G A Vehar 《Biochemistry》1987,26(24):7786-7791
Tissue-type plasminogen activator (t-PA) plays a central role in fibrinolysis in vivo. Although it is known to bind to fibrin, the dissociation constant (Kd) and number of moles bound per mole of fibrin monomer (n) have never been measured directly. In this study, the binding of both the one-chain form and the two-chain form of recombinant, human t-PA to fibrin was measured. Although more one-chain t-PA than two-chain t-PA is bound to fibrin, the Kd's and n's were within experimental error of each other. Significantly more t-PA is bound to clots made from fibrinogen which has been digested with plasmin than to clots made from intact fibrinogen. The additional binding was shown to be due to the formation of new set(s) of binding site(s) with dissociation constants that are 2-4 orders of magnitude tighter than the binding site present on clots made from intact fibrinogen. epsilon-Aminocaproic acid was capable of competing for the loose binding site present on both intact and degraded fibrin but had little effect on the binding of t-PA to the new site(s) formed by plasmin digestion. This increase in binding caused by plasmin-mediated proteolysis of fibrin suggests a possible mechanism for a positive regulation capable of accelerating fibrinolysis.  相似文献   

18.
In previous studies, we have shown that the stretch 148-197 of the fibrinogen A alpha chain plays a crucial role in the acceleration of the tissue-type plasminogen activator (t-PA)-catalyzed plasminogen activation. In this study we have synthesized parts of A alpha 148-197 and analogues thereof. We found that the peptides with sequences identical with A alpha 148-161 and A alpha 149-161 of human fibrinogen accelerate the plasminogen activation by t-PA, whereas the corresponding peptides in which lysine residues A alpha 157 had been replaced by valine or arginine had no accelerating capacity. Furthermore, succinylation of the lysine residue(s) in the synthesized peptides A alpha 148-161 and A alpha 149-161 leads to loss of accelerating action. These findings show that lysine residue A alpha 157 is crucial for the accelerating action of fibrin on the t-PA-catalyzed plasminogen activation.  相似文献   

19.
Tissue-type plasminogen activator (t-PA) is a mosaic protein containing several distinct structural domains attached to the serine protease catalytic unit present at its COOH terminus. To investigate structure-function relationships in t-PA, we deleted the NH2-terminal domains, finger and epidermal growth factor, by genetic engineering. The genes for the parent and mutant t-PA were expressed in a bovine papilloma virus-dependent mammalian cell system. The secreted proteins were purified to homogeneity. The mutant protein was processed to the expected size of about 60 kDa compared to approximately 68 kDa for the parent t-PA, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fibrin autography. While the mutant t-PA had amidolytic activity comparable to native t-PA, it did not bind appreciably to fibrin. Consequently, fibrin-dependent enzymic activity, i.e. plasminogen activation in the presence of soluble fibrin and fibrinolysis were lower than with native recombinant t-PA. The effect of deletion of NH2-terminal domains on the plasma half-life (t1/2) was investigated by injecting native and mutant t-PA into mice. While the majority of the t-PA disappeared initially with a t1/2 of about 2 min, mutant t-PA cleared at a much slower rate with t1/2 of about 50 min. These findings suggest that the NH2-terminal domains of t-PA not only determine its specificity for binding to fibrin but also mediate its clearance from plasma in vivo. Furthermore, the catalytic unit in t-PA seems to function autonomously.  相似文献   

20.
A novel triple-kringle plasminogen activator protein, PK1 delta FE1X, has been produced which is a genetic chimera between the fibrin binding kringle 1 domain of plasminogen and the two kringles and serine protease domains of naturally occurring wild-type tissue plasminogen activator (wt t-PA). This chimera also contains a modification to prevent high mannose type N-linked glycosylation on kringle 1 of t-PA. PK1 delta FE1X is biochemically and fibrinolytically similar to wt t-PA in vitro but retains the decreased plasma clearance rate characteristic of other t-PA variants which lack fibronectin finger-like and epidermal growth factor domains. The serine protease domain of PK1 delta FE1X exhibits the amidolytic activity characteristic of wt t-PA. In an indirect coupled plasminogen activator assay, the specific activity of PK1 delta FE1X is approximately 1.4 times greater than that of wt t-PA. In a fibrin film-binding assay, greater binding to untreated fibrin is observed with wt t-PA than with PK1 delta FE1X. However, following limited plasmin digestion of the fibrin film, PK1 delta FE1X binding increases to the level observed with wt t-PA. The incremental binding to plasmin-digested fibrin observed with PK1 delta FE1X is eliminated if plasmin digestion of the fibrin film is followed by carboxypeptidase B treatment. This result suggests that plasminogen kringle 1 binds plasmin-digested fibrin even after recombination with a heterologous protein. The fibrinolytic activity of PK1 delta FE1X in human plasma clot lysis assays was similar to that of wt t-PA at activator concentrations of approximately 1 microgram/ml. At substantially lower concentrations, approximately 0.1 microgram/ml, PK1 delta FE1X was only slightly less active than wt t-PA. Pharmacokinetic analysis showed that wt t-PA activity is cleared approximately 15 times as rapidly as PK1 delta FE1X following intravenous bolus injection. In a rabbit jugular vein clot lysis model, intravenous bolus injection of 0.06 mg/kg of PK1 delta FE1X showed greater thrombolytic potency than a similar administration of 0.5 mg/kg of wt t-PA. Thus it appears that in vitro exon shuffling techniques can be used to generate novel fibrinolytic agents which biochemically and pharmacologically represent the combination of individual domains of naturally occurring proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号