首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We document phenotypic and genetic variation within and among populations of the seed heteromorphic species Heterosperma pinnatum Cav. (Compositae) in the production of seed morphs and in a variety of life-history and morphological characteristics that might be correlated with seed and head traits. Each trait is found to have significant genetic variance in most or, usually, all populations. Significant among-population genetic variation exists for all traits except number of achenes per head and seedling shape, although some traits have much less genetic variation among than within populations. Number and percentage of intermediate achenes per head, total number of achenes per head, and lengths of central and peripheral achenes had little among-population genetic variation compared to within-population variation. Most traits had slightly less genetic variation among than within populations; however, some traits (percentage of central achenes, length of awns, date that the first flowering head opened, date that the first fruiting head opened, and death date) had more among-population genetic variation. The proportions of achene morphs produced had high broad-sense heritabilities and high among-population genetic variance, except in the case of intermediate achenes. All phenological variables had high among-population genetic variation. Within-population heritabilities were high for dates of first flowering head and fruiting head but low for death date and reproductive interval. Family and population means measured in the greenhouse for traits having high broad-sense heritability or among-population genetic variance were closely correlated with field means for the corresponding families or populations. The amounts of phenotypic variation were similar for traits that were measured in both the field and the greenhouse. These lines of evidence suggest that greenhouse results provide reasonable estimates of genetic variation in the field for this species. Numerous studies have reported variation in the proportion of seed morphs for different heteromorphic-seeded species and have discussed adaptive scenarios for the evolution of seed proportions; however, our investigation is one of only a few that have documented the amount of phenotypic and genetic variation within and among populations.  相似文献   

2.
The use of skeletal nonmetric traits in studies of biological relationships often involves the assumption that variation in these traits is genetic. Studies of nonmetric traits in human groups and in inbred strains of mice and rabbits have indicated a genetic component to nonmetric trait variation. Skeletons of animals with known matrilineage membership were obtained from the Cayo Santiago skeletal collection in order to obtain a direct estimate of the heritabilities of several nonmetric traits in the free-ranging population of rhesus macaques on Cayo Santiago. Falconer's (1965) method was used to calculate heritability. Heritability estimates range from zero to one, and half of them are greater than 0.5. This indicates that there is a considerable amount of genetic variation for these traits among the Cayo macaques. There is a significant tendency for traits scoring the number of foramina to have lower heritabilities than those scoring hyperstotic or hypostotic traits.  相似文献   

3.
Comparative studies suggest that a positive correlation between xylem water transport and photosynthesis is adaptive. A requirement for the adaptive evolution of coordination between xylem and photosynthetic functions is the presence of genetic variation and covariation for these traits within populations. Here it was determined whether there was genetic variation and covariation for leaf blade hydraulic conductivity (K(W)), photosynthetic rate (A), stomatal conductance (g(s)), and time to flowering in a population of recombinant inbred lines of Avena barbata, a Mediterranean annual grass. Significant (P < 0.05) broad-sense heritabilities (H(2)) were detected for K(W) (H(2) = 0.33), A (H(2) = 0.23) and flowering time (H(2) = 0.62), but not for g(s). Significant positive genetic covariation between A and K(W) was also observed. There was no other genetic covariation among traits. The first evidence of genetic variation for K(W) within a species was obtained. These results also indicate that there is a genetic basis for the positive association between xylem water transport and photosynthesis. The presence of significant genetic variation and covariation for these traits in natural populations would facilitate correlated evolution between xylem and leaf functions.  相似文献   

4.
Most biological traits of human importance are complex in nature; their manifestation controlled by the cumulative effect of many genetic factors interacting with one another and with the individual’s life history. Because of this, mouse genetic reference populations (GRPs) consisting of collections of inbred lines or recombinant inbred lines (RIL) derived from crosses between inbred lines are of particular value in analysis of complex traits, since massive amounts of data can be accumulated on the individual lines. However, existing mouse GRPs are derived from inbred lines that share a common history, resulting in limited genetic diversity, and reduced mapping precision due to long-range gametic disequilibrium. To overcome these limitations, the Collaborative Cross (CC) a genetically highly diverse collection of mouse RIL was established. The CC, now in advanced stages of development, will eventually consist of about 500 RIL derived from reciprocal crosses of eight divergent founder strains of mice, including three wild subspecies. Previous studies have shown that the CC indeed contains enormous diversity at the DNA level, that founder haplotypes are inherited in expected frequency, and that long-range gametic disequilibrium is not present. We here present data, primarily from our own laboratory, documenting extensive genetic variation among CC lines as expressed in broad-sense heritability (H2) and by the well-known “coefficient of genetic variation,” demonstrating the ability of the CC resource to provide unprecedented mapping precision leading to identification of strong candidate genes.  相似文献   

5.
Immune defence is hypothesized to be a trait that bears significant fitness costs as well as benefits in that mounting a defence depreciates the value of other life‐history traits. Thus the cost of mounting an immune response could affect the evolution of both the immune system and correlated life history traits. In this study we examined, by means of a diallel cross of four inbred lines, the genetic basis of two measures of immune function, metabolic rate and several traits in the sand cricket, Gryllus firmus. We specifically addressed the following questions: (1) is immune function determined primarily by genetic constitution or correlations with phenotypic traits that could reduce the effectiveness of the immune response; (2) do the two measures of immune function covary; (3) What are the contributions of additive, nonadditive and maternal effects to the immune function? As estimates of immune function, we used lytic activity and encapsulation rate. We found that inbred crickets were smaller than individuals from the crossed lines and took longer to develop. However, inbred lines did not differ from the crossed lines in immune function nor metabolic rates, suggesting that increased homozygosity has little or no effect on these traits in G. firmus. We found that both immune parameters showed significant genetic variation but no consistent relationships with the other phenotypic traits (metabolic rate, head width, body mass, development time and activity). There was significant additive genetic variation only in encapsulation rate, but, with the exception of the activity measure, significant nonadditive and reciprocal variances were found in all traits. Metabolic rate of crickets was heritable, but there was neither phenotypic nor genetic association between metabolic rate and the two parameters of immune function. Further, there was no correlation between these two measures. Females showed a higher encapsulation response than males, but there was no sex differences in lytic activity. Our study indicates that genetic variation in immune parameters can be a very significant contributor to phenotypic variation in immune function.  相似文献   

6.
Human mate preferences have received a great deal of attention in recent decades because of their centrality to sexual selection, which is thought to play a substantial role in human evolution. Most of this attention has been on universal aspects of mate preferences, but variation between individuals is less understood. In particular, the relative contribution of genetic and environmental influences to variation in mate preferences is key to sexual selection models but has barely been investigated in humans, and results have been mixed in other species. Here, we used data from over 4000 mostly female twins who ranked the importance of 13 key traits in a potential partner. We used the classical twin design to partition variation in these preferences into that due to genes, family environment, and residual factors. In women, there was significant variability in the broad-sense heritability of individual trait preferences, with physical attractiveness the most heritable (29%) and housekeeping ability the least (5%). Over all the trait preferences combined, broad-sense heritabilities were highly significant in women and marginally significant in men, accounting for 20% and 19% of the variation, respectively; family environmental influences were much smaller. Heritability was a little higher in reproductive aged than in nonreproductive aged women, but the difference was not significant.  相似文献   

7.
P. D. Keightley  M. J. Evans    W. G. Hill 《Genetics》1993,135(4):1099-1106
To assess the potential to generate quantitative genetic variation by insertional mutagenesis in a vertebrate, lines of mice in which many provirus vector inserts segregated at a low initial frequency on an inbred background (insert lines) were subjected to divergent artificial selection on body weight at 6 weeks and responses and heritability estimates compared to control lines lacking inserts. Heritability estimates were more than 1.5 times greater in the insert lines than in the controls, but because the phenotypic variance was substantially higher in the insert lines the genetic variance was about 3 times greater. Realized heritability estimates tended to be lower than heritabilities estimated by an animal model which utilizes information in covariances between all relatives in the data set. A surprisingly large response to selection occurred in the inbred control line. Insert lines were about 20% less fertile than controls. Division of the selection lines into inbred sublines in the later generations of the experiment revealed substantially greater variation among sublines of the insert lines than among the controls. Heritabilities were similar to typical estimates for the trait in outbred populations. In conclusion, there was clear evidence of extra variation deriving from inserts, which has yet to be attributed to individual genes.  相似文献   

8.
The use of genetic modification (GM) in tree breeding would require that GM trees are superior to currently used seed orchard seedlings in the target trait and equal in other traits. We compare the variation of silver birch (Betula pendula Roth) lines carrying a sugar beet chitinase IV gene (chiIV) with the objective to improve fungal disease resistance to the variation of wild-type genotypes in disease resistance and other adaptive traits. The genetic variation in disease resistance was at the same level in transgenic (CVg 0.9?C19.0%) and wild-type trees (CVg 0?C19.7%), but the resistance characteristics of the most resistant wild-type genotype were usually equal or better than those of the best transgenic line. The broad-sense heritabilities varied from very low to moderate in disease resistance in both types. Broad-sense heritabilities in growth and leaf phenology-related traits were moderate and generally higher among the transgenic than the wild-type trees. The introduction of the sugar beet chiIV gene is likely to have fitness consequences in the form of lowered growth and quality characteristics of the transgenic lines without significant improvement in disease resistance compared with the natural variation of the same traits.  相似文献   

9.
茎秆维管束数目是玉米养分运输和抗倒伏的关键影响因素,本研究以遗传丰富的172份玉米自交系为研究材料,对茎秆上部小维管束和大维管束数目进行差异性分析,并通过不同杂种优势群的玉米茎秆上部维管束数目多重比较,分析各杂种优势群维管束数目变化趋势。研究结果表明:在不同玉米自交系中,茎秆上部小维管束和大维管束数目变异系数分别为16.67%~21.69%、25.83%~32.19%;小维管束和大维管束数目在不同自交系间的差异均达到极显著水平;小维管束和大维管束数目的广义遗传力分别为78.87%、82.58%;小维管束和大维管束数目在不同环境下均呈正相关关系。多重比较结果表明,各杂种优势群自交系茎秆上部小维管束和大维管束数目趋势一致,由少到多均依次为:兰卡斯特群、瑞德群、P群、旅大红骨群、唐四平头群。本研究初步了解了不同玉米自交系中维管束数目的遗传变异规律,并为进一步QTL定位和基因克隆奠定基础。  相似文献   

10.
The genetic basis of fluctuating asymmetry (FA), a measure of random deviations from perfect bilateral symmetry, has been the subject of much recent work. In this paper we compare two perspectives on the quantitative genetic analysis of FA and directional asymmetry (DA). We call these two approaches the character-state model and the environmental responsiveness model. In the former approach, the right and left sides are viewed as separate traits whose genetic coupling is manifested by the genetic correlation. This model leads to the relationship, h2(DA) = h2[(1-rA)/(1-rp)), where h2 is the heritability of each component trait (assumed to be the same), rA and rp are the genetic and phenotypic correlations between traits, respectively. Simulation shows that, under this model, the heritability of FA is considerably less than that of DA, except when heritabilities are very close to zero. The environmental responsiveness model permits genetic variance in FA even when the genetic correlation between traits is + 1. Simulation shows that under this model the heritability of FA can be uncoupled from that of DA. The additive and nonadditive components of the component (right and left) traits, their DA and FA values are estimated using a diallel cross of seven inbred lines of the sand cricket, Gryllus firmus. Four leg measurements were made and both the individual DA and FA values and the compound measures DASUM and CFA estimated. The heritabilities of the compound measures are slightly larger than the individual estimates. Dominance variance is observed in the individual traits but predicted to be an even smaller component of the phenotypic variance than the additive genetic variance. The estimated values confirm this, although a previous study has demonstrated that dominance variance is present. Because the heritabilities of FA are generally larger than those of DA, which never exceed 0.02, the environmental responsiveness model is more consistent with the data than the character-state model. A review of other data suggests that both sources of variation might be found in some species.  相似文献   

11.
Heritability estimates of metabolic syndrome traits vary widely across studies. Some studies have suggested that the contribution of genes may vary with age or sex. We estimated the heritability of 11 metabolic syndrome-related traits and height as a function of age and sex in a large population-based sample of twin families (N = 2,792–27,021, for different traits). A moderate-to-high heritability was found for all traits [from H2 = 0.47 (insulin) to H2 = 0.78 (BMI)]. The broad-sense heritability (H2) showed little variation between age groups in women; it differed somewhat more in men (e.g., for glucose, H2 = 0.61 in young females, H2 = 0.56 in older females, H2 = 0.64 in young males, and H2= 0.27 in older males). While nonadditive genetic effects explained little variation in the younger subjects, nonadditive genetic effects became more important at a greater age. Our findings show that in an unselected sample (age range, ∼18–98 years), the genetic contribution to individual differences in metabolic syndrome traits is moderate to large in both sexes and across age. Although the prevalence of the metabolic syndrome has greatly increased in the past decades due to lifestyle changes, our study indicates that most of the variation in metabolic syndrome traits between individuals is due to genetic differences.  相似文献   

12.
Rubber dandelion (Taraxacum kok-saghyz or TK) is a potential industrial crop species that can produce high-quality natural rubber in its roots. The present study estimated trait variance, inter-trait correlation, and entry-mean heritability for rubber yield-related traits and analyzed associations between these traits and 42 single-nucleotide polymorphism (SNP) markers. A trial was conducted at three environments to assess a biparental progeny of 66 F1 full-sibs, in a randomized complete block design (RCBD) with two replicates. Significant correlations, broad ranges of variation, and significant genotypic variance components were identified for five measured phenotypic traits. Moderate broad-sense heritability on an entry-mean heritability estimates (0.51–0.61) were obtained for five rubber yield-related traits based on a 1-year trial. However, the broad-sense heritability in general sense ranged from 0.09 to 0.15 depending on the trait. Two linkage groups were identified. Association analysis identified seven significant marker-trait gene associations, and only one marker was related to two traits. The implications of trait correlations and heritability for selection and improvement are discussed.  相似文献   

13.
We studied the potential for response to selection in typical physiological-thermoregulatory traits of mammals such as maximum metabolic rate (MMR), nonshivering thermogenesis (NST) and basal metabolic rate (BMR) on cold-acclimated animals. We used an animal model approach to estimate both narrow-sense heritabilities (h2) and genetic correlations between physiological and growth-related traits. Univariate analyses showed that MMR presented high, significant heritability (h2 = 0.69 +/- 0.35, asymptotic standard error), suggesting the potential for microevolution in this variable. However, NST and BMR presented low, nonsignificant h2, and NST showed large maternal/common environmental/nonadditive effects (c2 = 0.34 +/- 0.17). Heritabilities were large and significant (h2 > 0.5) for all growth-related traits (birth mass, growth rate, weaning mass). The only significant genetic correlations we found between a physiological trait and a growth-related trait was between NST and birth mass (r = -0.74; P < 0.05). Overall, these results suggest that additive genetic variance is present in several bioenergetic traits, and that genetic correlations could be present between those different kinds of traits.  相似文献   

14.
The maintenance of variation in sexually selected traits is a puzzle that has received increasing attention in the past several decades. Traits that are related to fitness, such as life‐history or sexually selected traits, are expected to have low additive genetic variance (and hence, heritability) due to the rapid fixation of advantageous alleles. However, previous analyses have suggested that the heritabilities of sexually selected traits are on average higher than nonsexually selected traits. We show that the heritabilities of sexually selected traits are not significantly different from those of nonsexually selected traits overall or when separated into the three trait categories: behavioural, morphological and physiological. In contrast with previous findings, the heritability of preference is quite low (h2 = 0.25 ± 0.06) and is in the same range as life‐history traits. We distinguish preferred traits as a category of sexually selected traits and find that the heritability of the former is not significantly different than sexually selected traits overall (0.48 ± 0.04 vs. 0.46 ± 0.03). We test the hypothesis that the heritability of sexually selected traits is negatively correlated with the strength of sexual selection. As predicted, there is a significant negative correlation between the heritabilities of sexually selected traits and the strength of selection. This suggests that heritabilities do indeed decrease as sexual selection increases but sexual selection is not strong enough to cause heritabilities of sexually selected traits to deviate from the same type of nonsexually selected traits.  相似文献   

15.
Genetic variation was measured for several morphological and life history characters in Erigeron annum, a triploid and obligately apomictic species. There was significant genetic variation for nearly all characters measured, including plant size, growth rate, time of flowering, biomass allocation to roots and shoots, seed weight, and germination response to temperature. Variance among genotypes accounted for up to 55% of the total phenotypic variance, well within the range of heritabilities observed for sexual species. These estimates of broad-sense heritability predict substantial short-term response to selection on life history characters in this asexual species.  相似文献   

16.
Data from natural populations have suggested a disconnection between trait heritability (variance standardized additive genetic variance, VA) and evolvability (mean standardized VA) and emphasized the importance of environmental variation as a determinant of trait heritability but not evolvability. However, these inferences are based on heterogeneous and often small datasets across species from different environments. We surveyed the relationship between evolvability and heritability in >100 traits in farmed cattle, taking advantage of large sample sizes and consistent genetic approaches. Heritability and evolvability estimates were positively correlated (r = 0.37/0.54 on untransformed/log scales) reflecting a substantial impact of VA on both measures. Furthermore, heritabilities and residual variances were uncorrelated. The differences between this and previously described patterns may reflect lower environmental variation experienced in farmed systems, but also low and heterogeneous quality of data from natural populations. Similar to studies on wild populations, heritabilities for life‐history and behavioral traits were lower than for other traits. Traits having extremely low heritabilities and evolvabilities (17% of the studied traits) were almost exclusively life‐history or behavioral traits, suggesting that evolutionary constraints stemming from lack of genetic variability are likely to be most common for classical “fitness” (cf. life‐history) rather than for “nonfitness” (cf. morphological) traits.  相似文献   

17.
小麦种子活力性状的遗传变异和相关研究   总被引:8,自引:0,他引:8  
本研究利用12个普通小麦品种对10个种子活力性状的遗传变异和相关研究,表明除正常幼苗百分率外,其余种子活力性状在品种间均存在显著的差异。种子贮藏物质转换效率、电导率两个性状问及与其它性状均无显著的遗传相关,因此对他们的选择不会影响到其它性状。通径分析表明幼苗干重主要取决于种子贮藏物质转换效率、种子贮藏物质利用速率;发芽指数主要由平均发芽时间决定。电导率、发芽势、幼苗于重、种子干重、发芽指数、种子贮藏物质消耗比率6个性状表现中到高的遗传力、遗传变异系数和相对遗传进展,指明通过遗传育种手段改良这些性状是可能的。  相似文献   

18.
We measured age-specific metabolic rates in 2861 individual Drosophila melanogaster adult males to determine how genetic variation in metabolism is related to life span. Using recombinant inbred (RI) lines derived from populations artificially selected for long life, resting metabolic rates were measured at 5, 16, 29, and 47 days posteclosion, while life spans were measured in the same genotypes in mixed-sex population cages and in single-sex vials. We observed much heritable variation between lines in age-specific metabolic rates, evidence for genotype x age interaction, and moderate to large heritabilities at all ages except the youngest. Four traits exhibit evidence of coordinate genetic control: day 16 and day 29 metabolic rates, life span in population cages, and life span in vials. Quantitative trait loci (QTL) for those traits map to the same locations on three major chromosomes, and additive genetic effects are all positively correlated. In contrast, metabolic rates at the youngest and oldest ages are unrelated to metabolic rates at other ages and to survival. We suggest that artificial selection for long life via delayed reproduction also selects for increased metabolism at intermediate ages. Contrary to predictions of the "rate of living" theory, we find no evidence that metabolic rate varies inversely with survival, at the level of either line means or additive effects of QTL.  相似文献   

19.
The evolutionary analysis of community organization is considered a major frontier in biology. Nevertheless, current explanations for community structure exclude the effects of genes and selection at levels above the individual. Here, we demonstrate a genetic basis for community structure, arising from the fitness consequences of genetic interactions among species (i.e., interspecific indirect genetic effects or IIGEs). Using simulated and natural communities of arthropods inhabiting North American cottonwoods (Populus), we show that when species comprising ecological communities are summarized using a multivariate statistical method, nonmetric multidimensional scaling (NMDS), the resulting univariate scores can be analyzed using standard techniques for estimating the heritability of quantitative traits. Our estimates of the broad-sense heritability of arthropod communities on known genotypes of cottonwood trees in common gardens explained 56-63% of the total variation in community phenotype. To justify and help interpret our empirical approach, we modeled synthetic communities in which the number, intensity, and fitness consequences of the genetic interactions among species comprising the community were explicitly known. Results from the model suggest that our empirical estimates of broad-sense community heritability arise from heritable variation in a host tree trait and the fitness consequences of IGEs that extend from tree trait to arthropods. When arthropod traits are heritable, interspecific IGEs cause species interactions to change, and community evolution occurs. Our results have implications for establishing the genetic foundations of communities and ecosystems.  相似文献   

20.
Although adaptive plasticity would seem always to be favored by selection, it occurs less often than expected. This lack of ubiquity suggests that there must be trade‐offs, costs, or limitations associated with plasticity. Yet, few costs have been found. We explore one type of limitation, a correlation between plasticity and developmental instability, and use quantitative genetic theory to show why one should expect a genetic correlation. We test that hypothesis using the Landsberg erecta × Cape Verde Islands recombinant inbred lines (RILs) of Arabidopsis thaliana. RILs were grown at four different nitrogen (N) supply levels that span the range of N availabilities previously documented in North American field populations. We found a significant multivariate relationship between the cross‐environment trait plasticity and the within‐environment, within‐RIL developmental instability across 13 traits. This genetic covariation between plasticity and developmental instability has two costs. First, theory predicts diminished fitness for highly plastic lines under stabilizing selection, because their developmental instability and variance around the optimum phenotype will be greater compared to nonplastic genotypes. Second, empirically the most plastic traits exhibited heritabilities reduced by 57% on average compared to nonplastic traits. This demonstration of potential costs in inclusive fitness and heritability provoke a rethinking of the evolutionary role of plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号