首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract We developed two Streptomyces-Escherichia coli shuttle vectors. The plasmid pRES102, consisting of the essential region of pRES1 and the thiostrepton resistance gene ( tsr ) fragment of pIJ702, was combined with the E. coli plasmid vector pUC18 or pUC19. The resulting shuttle vectors, designated pRES18 and pRES19, respectively, have relatively compact size (6.25 kb), low copy number, multiple cloning sites reciprocally arranged in opposite directions, and selection markers for both Streptomyces ( tsr ) and E. coli (β-lactamase ( bla ) and β-galactosidase ( lacZ )). These shuttle vectors are capable of carrying DNA fragments as long as 10 kb, of being maintained in S. griseus, S. lavendulae and S. lividans , and are compatible with pIJ702.  相似文献   

2.
Z Qin  K Peng  X Zhou  R Liang  Q Zhou  H Chen  D A Hopwood  T Kieser    Z Deng 《Journal of bacteriology》1994,176(7):2090-2095
Streptomyces hygroscopicus 10-22 could not be transformed with any of the commonly used Streptomyces plasmid vectors and was resistant to plaque formation by the Streptomyces phages phi C31 and R4. Repeated selection resulted in the isolation of derivatives of S. hygroscopicus 10-22 that could be transformed with pIJ101- and pJV1-derived cloning vectors and of restriction-deficient derivatives that could accept DNA propagated in Streptomyces lividans 66. These new strains, which include three that still produce the original antibiotics, can be used as hosts for gene cloning. Insertion of nonreplicating vectors by homologous recombination and transposition of Tn4560 were demonstrated in S. hygroscopicus 10-22.  相似文献   

3.
Summary Germinating spores of Streptomyces lividans, S. aureofaciens, S. rimosus and S. virginiae were electrotransformed with pIJ699, pIJ702, pWOR109 and pZAT22 plasmid DNAs. In all cases, thiostrepton resistant transformants were obtained with an efficiency of 1 × 102 to 5 × 103 per g of plasmid DNA.  相似文献   

4.
Streptomyces lividans ISP 5434 contains four small high copy number plasmids: pIJ101 (8.9 kb), pIJ102 (4.0 kb), pIJ103 (3.9 kb) and pIJ104 (4.9 kb). The three smaller species appear to be naturally occurring deletion variants of pIJ101. pIJ101 and its in vivo and in vitro derivatives were studied after transformation into S. lividans 66. pIJ101 was found to be self-transmissible by conjugation, to elicit "lethal zygosis" and to promote chromosomal recombination at high frequency in both S. lividans 66 and S. coelicolor A3(2). A restriction endonuclease cleavage map of pIJ101 was constructed for 11 endonucleases; sites for five others were lacking. Many variants of pIJ101 were constructed in vitro by inserting DNA fragments determining resistance to neomycin, thiostrepton or viomycin, and having BamHI termini, into MboI or BclI sites on the plasmid, sometimes with deletion of segments of plasmid DNA. The physical maps of these plasmids were related to their phenotypes in respect of lethal zygosis and transfer properties. In vivo recombination tests between pairs of variant plasmids were also done. These physical and genetic studies indicated that determinants of conjugal transfer occupy less than 2.1 kb of the plasmid. A second segment is required for spread of the plasmid within a plasmid-free culture to produce the normal lethal zygosis phenotype: insertion of foreign DNA in this region caused a marked reduction in the diameter of lethal zygosis zones. The minimum replicon was deduced to be 2.1 kb or less in size; adjacent to this region is a 0.5 kb segment which may be required for stable inheritance of the plasmid. The copy number of several derivatives of pIJ101 in S. lividans 66 was between 40 and 300 per chromosome and appeared to vary with the age or physiological state of the culture. pIJ101 derivatives have a wide host range within the genus Streptomyces: 13 out of 18 strains, of diverse species, were successfully transformed. Knowledge of dispensable DNA segments and the availability of restriction sites for the insertion of DNA, deduced from the properties of plasmids carrying the E. coli plasmid pACYC184 introduced at various sites, was used in the construction of several derivatives of pIJ101 suitable as DNA cloning vectors. These were mostly designed to be non-conjugative and to carry pairs of resistance genes for selection. They include a bifunctional shuttle vector for E. coli and Streptomyces; a Streptomyces viomycin resistance gene of this plasmid is expressed in both hosts.  相似文献   

5.
A 19 kb SphI DNA fragment containing the gene for the extracellular active-site serine beta-lactamase of Streptomyces cacaoi KCC-SO352 was cloned in Streptomyces lividans TK24 using the high-copy-number plasmid pIJ702 as vector. A 30-fold higher yield of beta-lactamase was obtained from S. lividans strain ML1, carrying the recombinant plasmid pDML51, than from S. cacaoi grown under optimal production conditions. In all respects (molecular mass, isoelectric point, kinetics of inhibition by beta-iodopenicillanate) the overproduced S. lividans ML1 beta-lactamase was identical to the original S. cacaoi enzyme. A considerable reduction of beta-lactamase production was caused by elimination of a 12.8 kb portion of the 19 kb DNA fragment by cleavage at an internal SphI site located more than 3 kb upstream of the beta-lactamase structural gene. The beta-lactamase gene was located within a 1.8 NcoI-BclI fragment but when this fragment was cloned in S. lividans pIJ702, the resulting strain produced hardly any more beta-lactamase than the original S. cacaoi.  相似文献   

6.
A lignin peroxidase gene was cloned from Streptomyces viridosporus T7A into Streptomyces lividans TK64 in plasmid pIJ702. BglII-digested genomic DNA (4-10 kb) of S. viridosporus was shotgun-cloned into S. lividans after insertion into the melanin (mel+) gene of pIJ702. Transformants expressing pIJ702 with insert DNA were selected based upon the appearance of thiostrepton resistant (tsrr)/mel-colonies on regeneration medium. Lignin peroxidase-expressing clones were isolated from this population by screening of transformants on a tsr-poly B-411 dye agar medium. In the presence of H2O2 excreted by S. lividans, colonies of lignin peroxidase-expressing clones decolorized the dye. Among 1000 transformants screened, 2 dye-decolorizing clones were found. One, pIJ702/TK64.1 (TK64.1), was further characterized. TK64.1 expressed significant extracellular 2,4-dichlorophenol (2.4-DCP) peroxidase activity (= assay for S. viridosporus lignin peroxidase). Under the cultural conditions employed, plasmidless S. lividans TK64 had a low background level of 2.4-DCP oxidizing activity. TK64.1 excreted an extracellular peroxidase not observed in S. lividans TK64, but similar to S. viridosporus lignin peroxidase ALip-P3, as shown by activity stain assays on nondenaturing polyacrylamide gels. The gene was located on a 4 kb fragment of S. viridosporus genomic DNA. When peroxidase-encoding plasmid, pIJ702.LP, was purified and used to transform three different S. lividans strains (TK64, TK23, TK24), all transformants tested decolorized poly B-411. When grown on lignocellulose in solid state processes, genetically engineered S. lividans TK64.1 degraded the lignocellulose slightly better than did S. lividans TK64. This is the first report of the cloning of a bacterial gene coding for a lignin-degrading enzyme.  相似文献   

7.
When Streptomyces parvulus ATCC 12434 was crossed with a plasmid-free S. lividans 66 derivative, some S. lividans exconjugants contained plasmid DNA, pIJ110 (13.6 kb). In a similar way, pIJ408 (15.05 kb) was found after mating S. glaucescens ETH 22794 with S. lividans. CCC DNA was not visualized in the donor strains. pIJ110 and pIJ408 each originates from a larger replicon, probably the chromosome, of S. parvulus or S. glaucescens. Restriction maps of pIJ110 and pIJ408, each for 10 enzymes, were derived. Derivatives of each plasmid were constructed carrying antibiotic-resistance markers (thiostrepton or viomycin) in a nonessential region and each plasmid was cloned into an Escherichia coli plasmid vector (pBR327 or pBR325). pIJ110 and pIJ408 resemble, in their origin, the previously known SLP1 plasmids (such as SLP1.2) which come from integrated sequences in the chromosome of S. coelicolor A3(2). pIJ110 and pIJ408, like SLP1.2, are self-transmissible, elicit the so-called lethal zygosis reaction (pock formation) and mobilize chromosomal markers. The three plasmids, in spite of their very different restriction maps, were found to be related: SLP1.2 and pIJ110 were strongly incompatible, showed complete resistance to each other's lethal zygosis reaction, and shared a segment of DNA with a considerable degree of cross-hybridization; pIJ110 and pIJ408 were weakly incompatible and showed partial resistance to lethal zygosis and a weak DNA cross-hybridization; pIJ408 and SLP1.2 were only distantly related on these criteria. pIJ110, pIJ408, and SLP1.2 hybridized with varying degrees of homology in Southern transfer experiments to DNA from 7 out of 13 of an arbitrary collection of wild-type streptomycetes. Integrated sequences capable of forming plasmids after transfer to S. lividans may therefore be widespread in the genus Streptomyces.  相似文献   

8.
A partial genomic library was prepared in E. coli JM109 using pBR322 as vector and 2.4 kb Sau 3A I chromosomal fragment, encoding a nitroaryl reductase (nbr A) gene, from Streptomyces aminophilus strain MCMB 411. From the library, 2.4 kb fragment was recloned in E. coli JM109 and S. lividans TK64 using pUC18 and pIJ702 as vectors respectively. The recombinant plasmids pSD103 and pSD105 expressed the reductase gene and exported the enzyme in periplasmic space of E. coli and in cytoplasm of S. lividans TK64. The proteins expressed by E. coli and S. lividans had the same molecular mass (70 kD) as that expressed by parent strain, which suggested that the enzyme was processed similarly by all strains. Activities of the enzymes cloned in E. coli JM109 and S. lividans TK64 containing recombinant plasmids pSD103 and pSD105 respectively were optimum at 30 degrees C and pH 9 and requirement of cofactors was same as that of the parent strain.  相似文献   

9.
Streptomyces tendae ATCC 31160 produces nikkomycin, a fungicide and insecticide that inhibits chitin synthases. Exposure of S. tendae protoplasts to 50 degrees C for 30 min is required for transformation (10(2) thiostrepton-resistant transformants micrograms of DNA-1) with plasmid pIJ702 or pIJ680 from Streptomyces lividans. pIJ702 and pIJ680 DNA isolated from the S. tendae transformants is efficient (10(6) to 10(7) transformants micrograms of DNA-1) in subsequent transformations of S. tendae protoplasts generated at 30 degrees C. PstI fails to cut the single PstI site in pIJ702 and cuts only one of the two PstI sites in pIJ680 DNA isolated from S. tendae transformants. Digests of plasmid DNA mixtures showed that plasmid DNA from S. tendae does not inhibit PstI activity. pIJ702 and pIJ680 DNA from S. tendae transformants was used to transform S. lividans to show that plasmid DNA remains unchanged, except for modification at some PstI sites in S. tendae, as a consequence of passage through S. tendae. The DNA modification is lost when S. lividans is transformed with plasmid DNA from S. tendae transformants. Since S. tendae modifies only some PstI sites, it appears the modification (presumably restriction activity also) activity in S. tendae recognizes a sequence that includes or overlaps the PstI hexanucleotide recognition sequence.  相似文献   

10.
The conjugative plasmid pIJ101 and its conjugative nondeletion derivatives pIJ303 and pIJ211 were tested for their transferability between strains of Streptomyces on laboratory media and in the soil environment. Their roles in the mobilization of the cloning vector plasmid pIJ702, a nonconjugative deletion derivative of pIJ101, were also examined. Biparental and triparental crosses were performed on agar slants and in sterile soil between the plasmid donor Streptomyces lividans and several recipient Streptomyces strains previously isolated from soil. Conjugative plasmids were transferred to seven recipients in slant crosses and to three recipients in soil. Plasmids isolated from recipients showed restriction fragment patterns identical to that of the original plasmid in S. lividans. Plasmid pIJ303 was transferred less frequently in soil than on slants, and the frequency of transfer was higher at 30 degrees C than at the other temperatures examined. Transconjugant Streptomyces strains differed in their ability to maintain pIJ303. The nonconjugative plasmid pIJ702 was mobilized on agar slants into S. coelicolor 2708, which already contains a self-transmissible plasmid. Plasmid pIJ702 was also mobilized into S. flavovirens, Streptomyces sp. strain 87A, and S. parvulus on slants and in sterile soil after triparental crosses with two donors, one containing pIJ702 and the other containing either pIJ101 or pIJ211. The presence of a conjugative plasmid donor was required for the transfer of pIJ702 to S. parvulus 1234, S. flavovirens 28, and Streptomyces sp. strain 87A. Plasmid pIJ702 was always transferred in its normal, autonomous form. Chromosomal recombination also occurred in transconjugants after the transfer of pIJ702. This is the first report of gene transfer between Streptomyces strains in soil.  相似文献   

11.
The conjugative plasmid pIJ101 and its conjugative nondeletion derivatives pIJ303 and pIJ211 were tested for their transferability between strains of Streptomyces on laboratory media and in the soil environment. Their roles in the mobilization of the cloning vector plasmid pIJ702, a nonconjugative deletion derivative of pIJ101, were also examined. Biparental and triparental crosses were performed on agar slants and in sterile soil between the plasmid donor Streptomyces lividans and several recipient Streptomyces strains previously isolated from soil. Conjugative plasmids were transferred to seven recipients in slant crosses and to three recipients in soil. Plasmids isolated from recipients showed restriction fragment patterns identical to that of the original plasmid in S. lividans. Plasmid pIJ303 was transferred less frequently in soil than on slants, and the frequency of transfer was higher at 30 degrees C than at the other temperatures examined. Transconjugant Streptomyces strains differed in their ability to maintain pIJ303. The nonconjugative plasmid pIJ702 was mobilized on agar slants into S. coelicolor 2708, which already contains a self-transmissible plasmid. Plasmid pIJ702 was also mobilized into S. flavovirens, Streptomyces sp. strain 87A, and S. parvulus on slants and in sterile soil after triparental crosses with two donors, one containing pIJ702 and the other containing either pIJ101 or pIJ211. The presence of a conjugative plasmid donor was required for the transfer of pIJ702 to S. parvulus 1234, S. flavovirens 28, and Streptomyces sp. strain 87A. Plasmid pIJ702 was always transferred in its normal, autonomous form. Chromosomal recombination also occurred in transconjugants after the transfer of pIJ702. This is the first report of gene transfer between Streptomyces strains in soil.  相似文献   

12.
Streptomyces tendae ATCC 31160 produces nikkomycin, a fungicide and insecticide that inhibits chitin synthases. Exposure of S. tendae protoplasts to 50 degrees C for 30 min is required for transformation (10(2) thiostrepton-resistant transformants micrograms of DNA-1) with plasmid pIJ702 or pIJ680 from Streptomyces lividans. pIJ702 and pIJ680 DNA isolated from the S. tendae transformants is efficient (10(6) to 10(7) transformants micrograms of DNA-1) in subsequent transformations of S. tendae protoplasts generated at 30 degrees C. PstI fails to cut the single PstI site in pIJ702 and cuts only one of the two PstI sites in pIJ680 DNA isolated from S. tendae transformants. Digests of plasmid DNA mixtures showed that plasmid DNA from S. tendae does not inhibit PstI activity. pIJ702 and pIJ680 DNA from S. tendae transformants was used to transform S. lividans to show that plasmid DNA remains unchanged, except for modification at some PstI sites in S. tendae, as a consequence of passage through S. tendae. The DNA modification is lost when S. lividans is transformed with plasmid DNA from S. tendae transformants. Since S. tendae modifies only some PstI sites, it appears the modification (presumably restriction activity also) activity in S. tendae recognizes a sequence that includes or overlaps the PstI hexanucleotide recognition sequence.  相似文献   

13.
In two separate studies a BclI-generated DNA fragment coding for the enzyme tyrosinase, responsible for melanin synthesis, was cloned from Streptomyces antibioticus DNA into two SLP1.2-based plasmid vectors (pIJ37 and pIJ41) to generate the hybrid plasmids, designated pIJ700 and pIJ701, using S. lividans 66 as the host. The fragment (1.55 kb) was subcloned into the multicopy plasmid pIJ350 (which carries thiostrepton resistance and has two non-essential BclI sites) to generate four new plasmids (pIJ702-pIJ705) with the tyrosinase insert located in either orientation at each site. All six plasmids conferred melanin production (the Mel+ phenotype) on their host. As in the S. antibioticus parent, strains of S. lividans carrying the gene specifying tyrosinase synthesis possessed an enzyme activity which was inducible. Most of the tyrosinase activity was secreted during growth of S. antibioticus; in contrast, the majority remained intracellular in the S. lividans clones. The specific activity of the induced tyrosinase activity (intracellular) was higher (up to 36-fold) when the gene was present on the multicopy vector in comparison with its location on the low copy plasmids, pIJ700 or pIJ701, or in S. antibioticus. Restriction mapping of the tyrosinase fragment in pIJ702 revealed endonuclease cleavage sites for several enzymes, including single sites for BglII, SphI and SstI that are absent from the parent vector (pIJ350). Insertion of DNA fragments at any one of these sites abolished the Mel+ phenotype. The results indicate that pIJ702 is a useful cloning vector with insertional inactivation of the Mel+ character as the basis of clone recognition.  相似文献   

14.
15.
The cholesterol oxidase gene (cho) of Streptomyces sp. was cloned into Streptomyces lividans with the vector pIJ702. Deletion analysis of the recombinant plasmid showed that entire coding sequence of the cho gene was located within a 2.5-kilobase segment of the chromosomal DNA obtained from the cholesterol oxidase-producing strain. When cloned cells of S. lividans were grown in an appropriate medium, the cells produced severalfold more cholesterol oxidase extracellularly than did the producing strain.  相似文献   

16.
A recombinant plasmid pWCL1 containing Streptomyces plasmid pIJ702, E. coli plasmid pUC12, and hepatitis B viral surface antigen (HBsAg) gene was stably maintained in E. coli, but exhibited structural instability in S. lividans 1326. The deletions were found ranging from 2.75 to 5.65 kilobases (kb) and most of them occurred within the melanin (mel) gene of pIJ702, resulting in the loss of part of the mel gene sequence plus the insert. The removal of the pUC12 sequence from pWCL1 eliminated the instability. However, pUC12 alone inserted in either orientation on pIJ702 also caused the deletion in S. lividans 1326. The results indicated that the structural instability of hybrid plasmid of pIJ702 depended on the interaction between the mel sequence and the inserted sequence.  相似文献   

17.
The cholesterol oxidase gene (cho) of Streptomyces sp. was cloned into Streptomyces lividans with the vector pIJ702. Deletion analysis of the recombinant plasmid showed that entire coding sequence of the cho gene was located within a 2.5-kilobase segment of the chromosomal DNA obtained from the cholesterol oxidase-producing strain. When cloned cells of S. lividans were grown in an appropriate medium, the cells produced severalfold more cholesterol oxidase extracellularly than did the producing strain.  相似文献   

18.
19.
A 6.5 kb DNA fragment containing a chloramphenicol-resistance gene of Streptomyces venezuelae ISP5230 was cloned in Streptomyces lividans M252 using the high-copy-number plasmid vector pIJ702. The gene was located within a 2.4 kb KpnI-SstI fragment of the cloned DNA and encoded an enzyme (chloramphenicol hydrolase) that catalysed removal of the dichloroacetyl moiety from the antibiotic. The deacylated product, p-nitrophenylserinol, was metabolized to p-nitrobenzyl alcohol and other compounds by enzymes present in S. lividans M252. Examination of the genomic DNA from several sources using the cloned 6.5 kb SstI fragment from S. venezuelae ISP5230 as a probe showed a hybridizing region in the DNA from S. venezuelae 13s but none in the DNA from another chloramphenicol producer, Streptomyces phaeochromogenes NRRLB 3559. The resistance phenotype was not expressed when the 6.5 kb SstI fragment or a subfragment was subcloned behind the lac-promoter of plasmid pTZ18R in Escherichia coli.  相似文献   

20.
A procedure has been developed for transforming protoplasts of the novobiocin producing strain Streptomyces niveus at high frequency. This required the isolation of strains LH13 and LH20 defective in DNA restriction from the wild type (ATCC 19793) which is transformed at very low frequencies. The LH13 and LH20 derivatives were obtained by curing pIJ702 DNA from the few S. niveus transformed protoplasts obtained by transformation of the wild type with high concentrations of pIJ702 DNA. Protoplasts of S. niveus strains LH13 and LH20 produced about 10(6) transformants/micrograms DNA with modified pIJ702 DNA derived by replication in S. niveus. Unmodified DNA (derived from replication in S: lividans) from a series of pIJ101, SCP2 and pSN2-based derivatives, gave transformation frequencies in the range of 10(2)-10(3) transformants/micrograms DNA. Optimal conditions for the formation and transformation of S. niveus protoplasts are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号