首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated and characterized mutants of Rous sarcoma virus which induce some parameters of transformation but fail to fully induce other parameters. We believe these mutants code for a pp60src which phosphorylates some targets well but phosphorylates others poorly. Using these mutants, we examined the phosphorylation of a 36,000 Mr protein which is phosphorylated on a tyrosine in cells transformed by Rous sarcoma virus, in an attempt to correlate this phosphorylation with the expression of specific transformation parameters. We found that phosphorylation of the 36,000 Mr protein was neither necessary nor sufficient for loss of fibronectin or for loss of density-dependent inhibition of growth. Phosphorylation of the protein was not sufficient for morphological alterations, increased hexose transport, or loss of adhesiveness. For the parameters measured, the best correlation was with increased plasminogen activator. In addition, it is noteworthy that cells infected with the mutant CU2 displayed low levels of phosphorylation of the 36,000 Mr protein and also were deficient in anchorage-independent growth and tumorigenicity, raising the possibility that the phosphorylation of the 35,000 Mr protein may be required for malignant growth properties.  相似文献   

2.
Transformation by Rous sarcoma virus results in a dramatic increase in the rate at which the transformed cells transport glucose across the cell membrane. The increased transport rate is a consequence of an increased number of transporters in the transformed cells. Utilizing antibody raised against the purified human erythrocyte glucose transporter, we have identified the glucose transporter as a membrane glycoprotein with a monomer Mr of approximately 41,000. The increased rate of glucose transport is dependent on the activity of pp60src, the transforming protein of Rous sarcoma virus. This protein has been shown to be a protein kinase that phosphorylates on tyrosine residues. We have examined the tyrosine phosphorylation of a major cellular protein of Mr 36,000 in cells infected with a panel of partially transforming mutants of Rous sarcoma virus. One of these mutants (CU2) increases the rate of glucose transport only slightly and does not render the infected cells fully anchorage independent or tumorigenic (although other transformation parameters are fully induced). Cells infected with this mutant display a 36,000-dalton protein that is phosphorylated to a considerably lesser extent than cells infected with wild-type virus. Analyses of this sort may help to identify the cellular targets of pp60src whose phosphorylation is necessary for the increased glucose transport rate.  相似文献   

3.
Rous sarcoma virus (RSV)-induced transformation is mediated by the action of the viral src gene product pp60src. This transforming protein is found at several cytoplasmic locations, including the adhesion plaques of RSV-transformed cells. In these studies, we have focused on the adhesion plaque location of pp60src and determined whether any of the induced transformation parameters correlate with the presence of pp60src in the adhesion plaques. A series of partial transformation mutants of RSV that induce distinct transformation phenotypes were used, and infected chicken embryo cells were examined for (i) intracellular pp60src location, (ii) vinculin localization, (iii) abundance of phosphotyrosine on vinculin, (iv) integrity of stress fibers, and (v) expression of cell surface fibronectin. The results indicate that, among the limited number of mutants studied here, the presence of pp60src in adhesion plaques is independent of growth in soft agar and the increased phosphorylation of vinculin on tyrosine, but it does correlate with the loss of cell surface fibronectin. An elevated abundance of phosphotyrosine on vinculin is insufficient to cause stress fiber dissolution and is independent of the loss of fibronectin from the extracellular matrix. However, the increased relative amount of phosphotyrosine on vinculin is related to the ability of the cells to grow in soft agar. The adhesion plaque binding and tyrosine-specific kinase activities seem to represent two independent functions of pp60src.  相似文献   

4.
The transforming protein of Rous sarcoma virus, pp60v-src, is known to be a tyrosine protein kinase, but the mechanism of cell transformation remains unclear. In further investigating pp60v-src structure and function, we have analyzed two temperature-sensitive (ts) Rous sarcoma virus src gene mutants, tsLA29 and tsLA32. The mutations in tsLA29 and tsLA32 map in the carboxy-terminal region and the amino-terminal half of pp60v-src, respectively, and encode mutant proteins with either temperature-labile (tsLA29) or -stable (tsLA32) kinase activities. Here we examined the intracellular processing and localization of these pp60v-src mutants and extended our characterization of transformation parameters expressed by cells infected by the Rous sarcoma virus variants. No obvious defects in functional integrity of the tsLA32 pp60v-src could yet be demonstrated, whereas the tsLA29 pp60v-src was perturbed not only in kinase activity, but also in aspects of protein processing and localization. Analysis of transformation parameters expressed by infected cells demonstrated the complete temperature lability of both mutants.  相似文献   

5.
We have constructed mutants of Rous sarcoma virus expressing p60src that are underphosphorylated on serine or tyrosine, by linker insertion or insertion/ deletion into cloned Rous sarcoma virus DNA, and recovery of mutant virus by transfection of chicken embryo fibroblasts. Cells infected with mutants whose p60src lack the major site of either serine or tyrosine phosphorylation were morphologically transformed and formed colonies in soft agar. The tyrosine kinase activities of the mutant p60src measured in vivo and in vitro were close to the wild type activity. Peptide mapping showed that phosphorylation on tyrosine and serine of p60src is independent: the major phosphorylated tyrosine and the major phosphorylated serine can each be phosphorylated in the absence of phosphorylation of the other.  相似文献   

6.
We have been interested in how Rous sarcoma virus (RSV) influences transformed cell morphology and compared the molecular properties of chicken embryo cells (CEC) infected with mutants of RSV that induce the fusiform transformed cell morphology with those of CEC infected by wild-type RSV, which induces the more normal round transformed cell morphology. We looked for properties shared by all fusiform mutant-infected cells, because these may be responsible for maintaining the fusiform morphology. Five different fusiform mutants, two wild-type RSVs, and one wild-type back revertant of a fusiform mutant were studied. In the fusiform mutant-infected cells, the localization and myristylation of pp60src were determined and the extent of expression of the extracellular matrix protein fibronectin was examined at both the mRNA and protein levels. The phosphorylation of vinculin on tyrosine also was examined in the same CEC. Within all fusiform mutant-transformed CEC, pp60src was dramatically absent from the adhesion plaque sites normally seen in cells transformed with wild-type RSV, and these transformed CEC all expressed more fibronectin mRNA and protein in the extracellular matrix than did the wild-type RSV-transformed CEC. The absence of pp60src from the adhesion plaques was not due to lack of myristylation of the src protein, and tyrosine phosphorylation of vinculin was not related to fibronectin expression. These results suggest that the inverse relationship between pp60src in the adhesion plaques and fibronectin expression in the extracellular matrix may be interconnected phenomena and could be related to the maintenance of the fusiform transformed morphology.  相似文献   

7.
Tyrosine-specific phosphorylation of cellular proteins has been implicated in the neoplastic transformation of cells by Rous sarcoma virus (RSV). One of the putative substrates for the src gene product (pp60v-src) of RSV is the cytoskeletal protein vinculin, giving rise to the hypothesis that tyrosine-specific phosphorylation of vinculin disrupts adhesion plaque integrity, leading to the characteristic rounded morphology of RSV-transformed cells. We have investigated this hypothesis by analysing the properties of fibroblasts transformed by conditional and non-conditional mutants of RSV which confer different morphologies on infected cells, with respect to formation of microfilament bundles, formation of vinculin-containing adhesion plaques, the deposition of a fibronectin-containing extracellular matrix, the localization of pp60v-src and the tyrosine-specific phosphorylation of vinculin. Cells transformed by the temperature-sensitive (ts) RSV mutant LA32 cultured at 41 degrees C were morphologically normal, and contained prominent microfilament bundles and well-developed adhesion plaques. However, these cells had a fully active pp60v-src kinase, had pp60v-src concentrated in their adhesion plaques and contained vinculin which was heavily phosphorylated on tyrosine residues. Cells transformed by a recovered avian sarcoma virus, rASV 2234.3 exhibited a markedly fusiform morphology with pp60v-src concentrated in well-developed adhesion plaques and an elevation of the phosphotyrosine content of vinculin. Cells transformed by LA32 at restrictive temperature comprise morphologically normal cells, indistinguishable from untransformed CEF, yet which contain tyrosine-phosphorylated vinculin and suggest that neither tyrosine-specific phosphorylation of vinculin nor pp60v-src concentration in adhesion plaques is sufficient for the rounded morphology of RSV-transformed cells.  相似文献   

8.
We have examined the phosphorylation state of five proteins known to become phosphorylated on tyrosine during transformation by Rous sarcoma virus by using cells infected with a panel of partially transforming mutant viruses. Situations of viral mutant and growth temperature were found in which phosphorylation of some proteins occurred more extensively than that of others, indicating that mutations in the src gene had affected the specificity of pp60src for some of its substrates as well as affecting the activity of the enzyme. To obtain insight into the biological functions of these phosphorylations, comparisons were made between the degree of phosphorylation of these proteins and the expression of various indicators of the transformed phenotype. The data suggest that phosphorylation of proteins l, p, and q (Mr of 46,000, 39,000 and 28,000, respectively) is not sufficient to induce changes in adhesiveness, hexose transport or morphology. The phosphorylation of protein p or l or total phosphotyrosine content correlated well with the production of plasminogen activator, and the phosphorylation of proteins l and q correlated well with increased hexose transport. However, even when good correlations were observed, significant exceptions were sometimes noted. It thus remains possible that some phosphorylations on tyrosine observed in Rous sarcoma virus-transformed cells are not causally related to the expression of the measured parameters of transformation.  相似文献   

9.
Chicken embryo cells infected with partial transformation mutants of Rous sarcoma virus were tested for tumor-forming ability in chickens and in nude mice. Cells transformed by each of these partial transformation mutants display different combinations of transformation parameters. They therefore present a potentially favorable system for analyzing which properties of transformed cells are necessary for tumor formation. We found that the relative tumorigenicity of the virus mutants was generally similar in chickens and in nude mice, except that certain temperature-conditional mutants appeared to be sensitive to the differences in body temperature of the two experimental animals. (The body temperature of nude mice is 4 to 5 degrees C lower than that of chickens). Thus, the nude mouse appears to be a suitable system for testing the tumorigenicity of transformed chicken cells. Because mice are nonpermissive for Rous sarcoma virus infection and replication, it was possible to recover the transformed chicken cells from the tumors in this host and to determine what phenotypic changes they had undergone during tumor development. We also examined the relationship between various cellular properties of the virus-infected chicken cells in vitro and their tumorigenicity in nude mice. The combined results of these two studies indicated that anchorage independence and plasminogen activator production were highly correlated with the tumor-forming ability of these cells, whereas loss of fibronectin did not correlate with tumorigenicity. Furthermore, the inability of the least tumorigenic virus mutant to stimulate the phosphorylation of a 36,000-Mr target of pp60src raises the possibility that the 36,000-Mr protein plays a role in tumor formation.  相似文献   

10.
To analyze the signaling pathways utilized in malignant transformation by pp60v-src, we have isolated and characterized src mutants which possess normal levels of protein tyrosine kinase activity but which cause only a partially transformed phenotype. Our hypothesis is that such mutants are partially defective for transformation because they are defective in their ability to activate specific components of the cellular signaling machinery while still activating others. In this communication, we report on the molecular and biochemical characterization of one such mutant, CU12 (D. D. Anderson, R. P. Beckmann, E. H. Harms, K. Nakamura, and M. J. Weber, J. Virol. 37:455-458, 1981). Cells infected with this mutant are capable of anchorage-independent growth, but rather than exhibiting the rounded and refractile morphology characteristic of wild-type-infected cells, they display an extremely elongated, fusiform morphology. The morphological properties of this mutant src could be accounted for entirely by a single mutation in the SH3 domain (lysine 106 to glutamate). Other mutations were constructed in this region by in vitro mutagenesis, both in a v-src and in an activated c-src background, and several of them also induced a fusiform morphology. All of the mutations inducing fusiform morphology also resulted in decreased association of pp60src with phosphatidylinositol 3'-kinase activity. In addition, association of pp60src with some tyrosine-phosphorylated proteins was altered. We propose that the SH3 domain participates (along with the SH2 domain) in the interaction of pp60src with cellular signaling proteins, and we speculate that the association with phosphatidylinositol 3'-kinase plays an important role in the regulation of cellular morphology.  相似文献   

11.
The expression of membrane-associated transformation-specific parameters was analyzed in de novo Rous sarcoma virus (strain SR-RSV-D) infected chicken embryo fibroblasts pretreated with homologous interferon. Cellular morphology, hexose transport, microfilament organization, and tyrosine-phosphate content of two primary substrates of the transformation-generating viral kinase, pp60src, were found indistinguishable from non-infected controls. These observations support the hypothesis that vinculin and possibly 36 kDa protein are involved in microfilament organization and that tyrosine-phosphorylation of these structural proteins is a prerequisite for the rearrangement of microfilaments during transformation. In de novo infection, interferon pretreatment reduces viral protein synthesis and pp60src activity as compared to non-treated, SR-RSV-D infected cells. However, the phosphotyrosine content of total cellular proteins as measured under steady state conditions is as high in interferon-pretreated as in nontreated transformed cells.  相似文献   

12.
We have shown previously that the membrane association of the src proteins of recovered avian sarcoma viruses (rASVs) 1702 (56 kilodaltons) and 157 (62.5 kilodaltons), whose size variations occur within 8 kilodaltons of the amino terminus, is salt sensitive and that, in isotonic salt, these src proteins fractionate as soluble cytoplasmic proteins. In contrast, wild-type Rous sarcoma virus pp60src behaves as an integral plasma membrane protein in cellular fractionation studies and shows prominent membrane interaction by immunofluorescence microscopy. In this study we have examined the distribution of these size-variant src proteins between free and complexed forms, their subcellular localization by immunofluorescence microscopy, and their ability to effect several transformation-related cell properties. Glycerol gradient sedimentation of extracts from cells infected either with rASV 1702 or rASV 157 showed that soluble src proteins of these viruses were distributed between free and complexed forms as has been demonstrated for wild-type Rous sarcoma virus pp60src. Pulse-chase studies with rASV pp60src showed that, like wild-type Rous sarcoma virus pp60src, it was transiently found in a complexed form. Indirect immunofluorescence showed that size-variant pp60src proteins are localized in adhesion plaques and regions of cell-to-cell contact in rASV 1702- or 157-infected cells. This result is in contrast with the generalized localization of pp60src in plasma membranes of control rASV-infected cells which produce pp60src. Chicken embryo fibroblasts infected by rASVs 1702 and 157 display a partial-transformation phenotype with respect to (i) transformation-related morphology, (ii) cell surface membrane changes, and (iii) retained extracellular fibronectin. It is possible that the induction of a partial-transformation phenotype may be the result of the unique interaction of the src proteins encoded by these viruses with restricted areas of the plasma membrane.  相似文献   

13.
This communication provides biochemical, immunological, and genetic evidence that pp60src, the Rous sarcoma virus transforming gene product, is associated with glycerol kinase activity. Our investigations demonstrated that the compound phosphorylated by pp60src or by glycerol kinase (EC 2.7.1.30) from Candida mycoderma share the same electrophoretic and chromatographic mobilities. The glycerol kinase and protein kinase activities of pp60src were inhibited similarly by preincubation with immune IgG. Both activities were reduced 6-9-fold in pp60src preparations derived by immunoaffinity chromatography from cells which were infected with NY68, a temperature-sensitive transformation mutant of Rous sarcoma virus. The thermolability at 41 degrees C of the glycerol kinase activity of pp60src from the mutant virus-infected cells was greater (t/2 = 1.3 min) than the same activity in pp60src preparations from wild type virus-infected cells (t/2 = 4.8 min).  相似文献   

14.
A mutant in src, the oncogene of Rous sarcoma virus, has been constructed in which the major phosphorylated tyrosine (Tyr-416, located in the carboxy-terminal half of the protein) has been replaced by phenylalanine. Mouse cells transformed with this mutant src form foci and grow in soft agar, indicative of a transformed state. Also, the mutant protein retains the wild-type ability to phosphorylate proteins on tyrosine. Partial proteolysis revealed that the carboxy-terminal half of the mutant protein was still phosphorylated, although apparently to a lesser extent. Analysis indicated that this residual phosphorylation was on tyrosine. We conclude that the major tyrosine phosphorylation in pp60v-src is not required for two of the protein's notable properties--protein kinase activity and transformation of cultured cells.  相似文献   

15.
To examine how amino acid sequences outside of the catalytic domain of pp60c-src influence the functional activity of this protein, we have introduced deletion mutations within the amino-terminal half of pp60c-src. These mutations caused distinct changes in the biochemical properties of the c-src gene products and in the properties of cells infected with retroviruses carrying these mutant c-src genes. Cells expressing the c-srcNX protein, which contains a deletion of amino acids 15 to 89, displayed a refractile, spindle-shaped morphology, formed intermediate-sized, tightly packed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Thus, deletion of amino acids 15 to 89 can activate the kinase activity and transforming potential of the c-src gene product. Deletion of amino acids 112 to 225, however, did not increase the kinase activity or transforming ability of pp60c-src; indeed, deletion of these sequences in c-srcHP suppressed phenotypic alterations induced by pp60c-src. Cells expressing the c-srcNP or c-srcBS gene products (containing deletions of amino acids 15 to 225 and 55 to 169, respectively) displayed a fusiform, refractile morphology and formed diffuse colonies in soft agar; the mutant proteins displayed an increased in vitro protein-tyrosine kinase activity. However, only a few cellular proteins contained elevated levels of phosphotyrosine in vivo. Thus, deletions downstream of amino acid 89 severely restricted the ability of c-src to phosphorylate cellular substrates in vivo without affecting the intrinsic tyrosine kinase activity of the c-src gene product. These results suggest the existence of at least two modulatory regions within the amino-terminal half of pp60c-src that are important for the regulation of tyrosine kinase activity and for the interaction of pp60c-src with cellular substrates.  相似文献   

16.
Infection of avian macrophages with Rous sarcoma virus does not induce any changes in the morphology, growth behavior, or expression of macrophage-specific proteins. The absence of cellular transformation does not result from a block in the synthesis of viral proteins, since infectious viruses are released from a majority of cells in the culture. In this report, we examine the synthesis, processing, and functional activity of pp60src in Rous sarcoma virus-infected macrophages to determine whether the absence of transformation is due to an alteration in the functional expression of pp60src. Although the absolute level of pp60src was reduced compared with fibroblasts, the protein exhibited the same phosphorylation pattern and subcellular distribution and was able to phosphorylate immunoglobulin in the immune complex-protein kinase assay. These results imply that the failure of Rous sarcoma virus to transform macrophage may be due to a restriction in the cellular response to a functional src protein, perhaps due to the absence of cellular products which are essential for mediating pp60src-induced transformation.  相似文献   

17.
dlPA105 is a spontaneous variant of Rous sarcoma virus, subgroup E, which carries a deletion in the N-terminal portion of the v-src gene coding sequence. This virus was isolated on the basis of its ability to induce proliferation of quiescent quail neuroretina cells. The altered v-src gene encodes a phosphoprotein of 45,000 daltons which possesses tyrosine kinase activity. DNA sequencing of the mutant v-src gene has shown that deletion extends from amino acid 33 to 126 of wild-type p60v-src. We investigated the tumorigenic and transforming properties of this mutant virus. dlPA105 induced fibrosarcomas in quails with an incidence identical to that induced by wild-type virus. Quail neuroretina cells infected with the mutant virus were morphologically transformed and formed colonies in soft agar. In contrast, dlPA105 induced only limited morphological alterations in quail fibroblasts and was defective in promoting anchorage-independent growth of these cells. Synthesis and tyrosine kinase activity of the mutant p45v-src were similar in both cell types. These data indicate that the portion of the v-src protein deleted in p45v-src is dispensable for the mitogenic and tumorigenic properties of wild-type p60v-src, whereas it is required for in vitro transformation of fibroblasts. The ability of dlPA105 to induce different transformation phenotypes in quail fibroblasts and quail neuroretina cells is a property unique to this Rous sarcoma virus mutant and provides evidence for the existence of cell-type-specific response to v-src proteins.  相似文献   

18.
S D Balk  H S Gunther  A Morisi 《Life sciences》1984,35(11):1157-1171
Normal chicken heart mesenchymal cells at low density in monolayer culture in plasma-containing medium have a polygonal shape and are proliferatively quiescent. The combination of epidermal growth factor and insulin at hyperphysiological concentration, an insulin-like growth factor surrogate, causes these cells to assume a fusiform shape and to increase 40-fold in number during four days of incubation. These mitogenic hormones do not, however, induce normal chicken heart mesenchymal cells to form colonies in agarose suspension culture. Chicken heart mesenchymal cells infected with the Schmidt-Ruppin or Prague-A strains of Rous sarcoma virus or with the Fujinami or Y73 avian sarcoma viruses assume spindle and round shapes, increase 50-100 fold in number during four days of monolayer culture in the absence of mitogenic hormones and form macroscopic colonies during 3-4 days of agarose suspension culture. The autonomous (mitogenic hormone-independent) proliferation, in monolayer culture, of cells infected with temperature-sensitive transformation mutants of Rous sarcoma virus (tsNY68, tsNY72, tsLA24, tsLA29) is temperature-sensitive. Chicken heart mesenchymal cells infected with avian erythroblastosis virus assume spindle shapes and proliferate in monolayer culture at a rate comparable to that of sarcoma virus-infected cells but do not, however, form colonies in agarose suspension culture. Cells infected with the myelocytomatosis virus MC29 assume stellate shapes and increase 18-fold in number during four days of monolayer culture. Cells infected with the myelocytomatosis virus MH2 assume fusiform shapes and increase fourfold in number during four days of monolayer culture. Neither MC29 nor MH2 renders chicken heart mesenchymal cells capable of colony formation in agarose suspension culture. Infection with avian leukosis viruses (RAV-1, RAV-2, RPL-42) or with transformation-defective mutants of Rous sarcoma virus (tdNY105, 107, 109) does not affect the morphology or proliferative behavior of chicken heart mesenchymal cells. Monolayer culture of chicken heart mesenchymal cells in plasma-containing medium appears, therefore, to define the ability of onc genes of acute transforming avian retroviruses to induce autonomous (mitogenic hormone-independent) cell proliferation, the essential characteristic of neoplasia. The differences in transformed morphology and rates of autonomous proliferation between cells infected with different acute transforming retroviruses probably reflects differences in the modes of action of the transforming proteins encoded by the onc genes of the respective viruses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
A potential substrate of p60v-src in Rous sarcoma virus-transformed cells was found to be a 130-kilodalton (kDa) glycoprotein which binds to lectin-Sepharose and can be immunoprecipitated by an anti-phosphotyrosine antibody. This glycoprotein was shown to be distinct from the fibronectin receptor and a cellular protein phosphorylated in p60v-src immune complexes. The protein was a transmembrane protein localized in the plasma membrane and resistant to extraction with Triton X-100. The 130-kDa protein was also highly phosphorylated in cells transformed by Fujinami sarcoma virus or Y73 but not in cells infected with Rous sarcoma virus mutants that encode p60v-src lacking myristoylated N termini. Phosphorylation of this glycoprotein was temperature dependent in cells infected with temperature-sensitive mutants. The good correlation between its phosphorylation and morphological transformation, together with its relative abundance among phosphorylated proteins and its subcellular localization, suggests that phosphorylation of the 130-kDa glycoprotein is one of the primary events important for cell transformation by p60v-src and related oncogene products.  相似文献   

20.
Transformation of cells by Rous sarcoma virus results from the expression of the viral src gene product, pp60src. Site-directed mutagenesis techniques have been used to construct defined deletion mutations within the src gene of Prague A strain of Rous sarcoma virus. The deletion of DNA sequences at the Bg/II restriction site in the src gene yielded both transformation-defective mutants (tdCH4, 64, and 146) and a mutant temperature sensitive for morphological transformation (tsCH119). The genome of tsCH119 contains an in-phase deletion of approximately 160 base pairs, which mapped to the immediate 3' side of the Bg/II restriction site. Upon infection of chicken cells, tsCH119 encoded a structurally altered src protein, pp53src, containing a deletion of amino acid residues 202 to 255. Immune complexes containing pp53src isolated from tsCH119-infected cells grown at 41 degrees C exhibited only 50% less tyrosine-specific kinase activity than immune complexes isolated from cells grown at 35 degrees C. pp53src immunoprecipitated from tsCH119-infected cells grown at either 35 or 41 degrees C contained phosphoserine and phosphotyrosine. We suggest that tsCH119 represents a class of mutants containing mutations mapping within a functionally important domain of the src protein, distinct from the domain specifying the protein kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号