首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Recent advances in the computation of free energies have facilitated the understanding of host—guest and protein—ligand recognition. Rigorous perturbation methods have been assessed and expanded, and more approximate techniques have been developed that allow faster treatment of diverse systems.  相似文献   

3.
Random peptide libraries displayed on phage are used as a source of peptides for epitope mapping, for the identification of critical amino acids responsible for protein—protein interactions and as leads for the discovery of new therapeutics. Efficient and simple procedures have been devised to select peptides binding to purified proteins, to monoclonal and polyclonal antibodies and to cell surfaces in vivo and in vitro.  相似文献   

4.
The three-dimensional structures of several biotin-binding proteins are now known, giving insights into the molecular architecture of the binding sites for biotin. In combination with biochemical and computational approaches, these structural insights provide the basis for our present understanding of biotin—protein interactions which, in some cases, give rise to spectacular binding constants.  相似文献   

5.
Over the next decade, the impact of library synthesis will play a major role in shortening the lead optimization phase of drug discovery. The prognosis for combinatorial chemistry to discover fundamentally different new classes of therapeutically active small molecules against some of the more difficult biological targets is less certain. Expectations are high because the technology potentially allows us to sample available drug space by synthesizing all possible small molecule ligands (variously estimated to be between 1030–1050 compounds). Some caution is advised, however, since, despite recent increases in high-throughput screening of substantially greater numbers of synthetic compounds and natural products, we are not routinely finding a plethora of new structures. The outcome may be that combinatorial chemistry offers us the ability to work faster on finding ligands for well-established tractable targets, such as G-protein-coupled receptors, ion channels or proteases, rather than, say, the more complex protein—protein interactions which from the majority of targets in signal transduction pathways.  相似文献   

6.
New optical assay methods promise to accelerate the use of living cells in screens for drug discovery. Most of these methods employ either fluorescent or luminescent read-outs and allow cell-based assays for most targets, including receptors, ion channels and intracellular enzymes. Furthermore, genetically encoded probes offer the possibility of custom-engineered biosensors for intracellular biochemistry, specifically localized targets, and protein—protein interactions.  相似文献   

7.
Two recent large-scale genetic screens in zebrafish have identified many mutations that affect differentiation in a variety of organ systems, particularly the notochord, the neural crest and the blood. The combination of these newly identified mutations and well established embryological methods makes zebrafish uniquely suited among vertebrate experimental systems to simultaneously address the roles of specific genes and specific cell—cell interactions during differentiation.  相似文献   

8.
In both Drosophila wings and vertebrate limbs, signaling between dorsal and ventral cells establishes an organizer that promotes limb formation. Significant progress has been made recently towards characterizing the signaling interactions that occur at the dorsal—ventral limb border. Studies of chicks have indicated that, as in Drosophila, this signaling process requires the participation of Fringe. Studies of Drosophila have indicated that Fringe functions by inhibiting the ability of Notch to be activated by one ligand, Serrate, while potentiating the ability of Notch to be activated by another ligand, Delta. Recent studies of both Drosophila and vertebrates have also shed new light on the signaling activity of the dorsal—ventral boundary limb organizer, and have highlighted how this organizer is maintained by feedback mechanisms with neighboring cells.  相似文献   

9.
A significant component of polarization in budding yeast involves the regulated restructuring of the actin cytoskeleton in response to defined cellular signals. Recent evidence suggests that such cytoskeletal organization arises through the action of large protein complexes that form in response to signals from small GTP-binding proteins, such as Cdc42, Rho, and Ras. These actin-organizing complexes may be fairly diverse, but generally consist of one or more central scaffold proteins, such as those of the formin class, that bind to signaling molecules and recruit actin-binding proteins to bring about desired polarizing events.  相似文献   

10.
Oligosaccharide receptors for bacteria: a view to a kill   总被引:1,自引:0,他引:1  
Oligosaccharide recognition is a major means of bacterial—host cell attachment. Bacterial—host receptor binding can subvert host signaling pathways to cause pathology. In addition, pathogenic bacteria can utilize more than one recognition system to bind host cells. Recent studies of Helicobacter pylori illustrate both these points. Together with this redundancy in recognition, the importance of multivalent sugar binding has become apparent. Multivalent sugar receptor analogs have been used to both prevent and detach adherent bacteria. Several new chemical technologies for the generation of bioactive glycopolymers have been developed and may be successfully adapted to address both these issues.  相似文献   

11.
Bcl-2 family proteins have important roles in tumor initiation, progression and resistance to therapy. Pro-survival Bcl-2 proteins are regulated by their interactions with pro-death BH3-only proteins making these protein–protein interactions attractive therapeutic targets. Although these interactions have been extensively characterized biochemically, there is a paucity of tools to assess these interactions in cells. Here, we address this limitation by developing quantitative, high throughput microscopy assays to characterize Bcl-2 and BH3-only protein interactions in live cells. We use fluorescent proteins to label the interacting proteins of interest, enabling visualization and quantification of their mitochondria-localized interactions. Using tool compounds, we demonstrate the suitability of our assays to characterize the cellular activity of putative therapeutic molecules that target the interaction between pro-survival Bcl-2 and pro-death BH3-only proteins. In addition to the relevance of our assays for drug discovery, we anticipate that our work will contribute to an improved understanding of the mechanisms that regulate these important protein–protein interactions within the cell.  相似文献   

12.
The mitotic spindle is a self-organizing structure that is constructed primarily from microtubules. Among the most important spindle microtubules are those that bind to kinetochores and form the fibers along which chromosomes move. Chemotherapeutics such as taxol and the vinca alkaloids perturb kinetochore—microtubule attachment and disrupt chromosome segregation. This activates a checkpoint pathway that delays cell cycle progression and induces programmed cell death. Recent work has identified at least four mammalian spindle assembly checkpoint proteins.  相似文献   

13.
A better understanding of the molecular mechanisms underlying disease is key for expediting the development of novel therapeutic interventions. Disease mechanisms are often mediated by interactions between proteins. Insights into the physical rewiring of protein–protein interactions in response to mutations, pathological conditions, or pathogen infection can advance our understanding of disease etiology, progression, and pathogenesis and can lead to the identification of potential druggable targets. Advances in quantitative mass spectrometry (MS)‐based approaches have allowed unbiased mapping of these disease‐mediated changes in protein–protein interactions on a global scale. Here, we review MS techniques that have been instrumental for the identification of protein–protein interactions at a system‐level, and we discuss the challenges associated with these methodologies as well as novel MS advancements that aim to address these challenges. An overview of examples from diverse disease contexts illustrates the potential of MS‐based protein–protein interaction mapping approaches for revealing disease mechanisms, pinpointing new therapeutic targets, and eventually moving toward personalized applications.  相似文献   

14.
The two examples of phospho and dephospho proteins for which structural data were previously available (glycogen phosphorylase and isocitrate dehydrogenase) demonstrated two different mechanisms for control. In glycogen phosphorylase, activation by phosphorylation results in long-range allosteric changes. In isocitrate dehydrogenase, inhibition by phosphorylation is achieved by an electrostatic blocking mechanism with no conformational changes. During the past year, the structures of the phospho and dephospho forms of two more proteins, the cell cycle protein kinase CDK2 and yeast glycogen phosphorylase, have been determined. The new results highlight the importance of the phosphoamino acids both in the organization of local regions of protein structure through phosphate—arginine interactions and in the promotion of long-range conformational responses.  相似文献   

15.
G proteins form a diverse family of regulatory GTPases which, in the GTP-bound state, bind to and activate downstream effectors. Structure of Ras homologs bound to effector domains have revealed mechanisms by which G proteins couple GTP binding to effector activation and achieve specificity. Complexes between structurally unrelated GTPase-activating proteins with complementary G proteins suggest common mechanisms by which GTP hydrolysis is stimulated via direct interactions with conformationally labile switch regions of the G protein.  相似文献   

16.
The technology of glycopeptide synthesis has recently developed into a fully mature science capable of creating diverse glycopeptides of biological interest, even in combinatorial displays. This has allowed biochemists to investigate substrate specificity in the biosynthetic processing and immunology of various protein glycoforms. The construction of all the mucin core structures and a varietyof cancer-related glycopeptides has facilitated detailed analysis of the interaction between MHC-bound glycopeptides and T cell receptors. Novel dendritic neoglycopeptide ligands have been shown to demonstrate high affinity for carbohydrate receptors and these interactions are highly dendrimer specific. Large complex N-linked oligosaccharides have been introduced into glycopeptides using synthetic or chemoenzymatic procedures, both methods affording pure glycopeptides corresponding to a single glycoform in preparative quantities. The improved availability of glycosyl transferases has led to increased use of chemoenzymatic synthesis. Chemical ligation has been introduced as a method of attaching glycans to peptide templates. Combinatorial synthesis and the analysis of resin-bound glycopeptide libraries have been successfully carried out by applying the ladder synthesis principle. Direct quantitative glycosylation of peptide templates on solid phase has paved the way for the synthesis of templated glycopeptide mixtures as libraries of libraries.  相似文献   

17.
18.
Despite the importance of DNA repair in protecting the genome, the molecular basis for damage recognition and repair remains poorly understood. In the base excision repair pathway (BER), DNA glycosylases recognize and excise damaged bases from DNA. This review focuses on the recent development of chemical approaches that have been applied to the study of BER enzymes. Several distinctive classes of noncleavable substrate analogs that form stable complexes with DNA glycosylases have recently been designed and synthesized. These analogs have been used for biochemical and structural analyses of protein—DNA complexes involving DNA glycosylases, and for the isolation of a novel DNA glycosylase. An approach to trap covalently a DNA glycosylase-intermediate complex has also been used to elucidate the mechanism of DNA glycosylases.  相似文献   

19.
Recent experience has helped to clarify the best ways to use monoclonal antibodies to solve clinical problems. For example, imaging based on tumor antigens, rather than tumor size, will permit early detection of cancer and accurate staging. Blocking receptor—ligand interactions may permit therapeutic intervention in cell growth or function but activity may depend on the choice of an antiligand or antireceptor strategy. Humanized antibodies will achieve greater intensity and duration of therapy, while allowing repeat administration in chronic diseases.  相似文献   

20.
High-performance liquid chromatography (HPLC) is being used extensively to characterize active polypeptides, precursor processing mechanisms, and cooperative peptide—protein noncovalent complexes in neuroendocrine pathways for neurohypophysial peptide hormones, oxytocin and vasopressin, and the hormone-associated proteins, neurophysins. Reversed-phase and ion-exchange HPLC polypeptide mapping have been used to detect the hormones, associated proteins, and other molecular forms containing these. This mapping but also ultimately to identify anatomical sites which contain the neurophysin/ hormone molecular pathways and to define the relatedness of polypeptide forms contained in different pathways. Reversed-phase HPLC also has provided a means to study proteolytic precursor processing, both to isolate synthetic and semisynthetic polypeptides and intermediates produced by these reactions. Finally, bioaffinity HPLC is being evaluated as a separatory and analytical tool. The latter includes its use to characterize the noncovalent peptide—protein and protein—protein interactions which occur among the molecular forms of the neurophysin/hormone pathways. These experiments typify the impact of HPLC for both analytical and preparative separations in studies of biologically active peptides and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号