首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We have suggested that the mirror-neuron system might be usefully understood as implementing Bayes-optimal perception of actions emitted by oneself or others. To substantiate this claim, we present neuronal simulations that show the same representations can prescribe motor behavior and encode motor intentions during action?Cobservation. These simulations are based on the free-energy formulation of active inference, which is formally related to predictive coding. In this scheme, (generalised) states of the world are represented as trajectories. When these states include motor trajectories they implicitly entail intentions (future motor states). Optimizing the representation of these intentions enables predictive coding in a prospective sense. Crucially, the same generative models used to make predictions can be deployed to predict the actions of self or others by simply changing the bias or precision (i.e. attention) afforded to proprioceptive signals. We illustrate these points using simulations of handwriting to illustrate neuronally plausible generation and recognition of itinerant (wandering) motor trajectories. We then use the same simulations to produce synthetic electrophysiological responses to violations of intentional expectations. Our results affirm that a Bayes-optimal approach provides a principled framework, which accommodates current thinking about the mirror-neuron system. Furthermore, it endorses the general formulation of action as active inference.  相似文献   

2.
We develop a general theory of organism movement in heterogeneous populations that can explain the leptokurtic movement distributions commonly measured in nature. We describe population heterogeneity in a state-structured framework, employing advection-diffusion as the fundamental movement process of individuals occupying different movement states. Our general analysis shows that population heterogeneity in movement behavior can be defined as the existence of different movement states and among-individual variability in the time individuals spend in these states. A presentation of moment-based metrics of movement illustrates the role of these attributes in general dispersal processes. We also present a special case of the general theory: a model population composed of individuals occupying one of two movement states with linear transitions, or exchange, between the two states. This two-state "exchange model" can be viewed as a correlated random walk and provides a generalization of the telegraph equation. By exploiting the main result of our general analysis, we characterize the exchange model by deriving moment-based metrics of its movement process and identifying an analytical representation of the model's time-dependent solution. Our results provide general and specific theoretical explanations for empirical patterns in organism movement; the results also provide conceptual and analytical bases for extending diffusion-based dispersal theory in several directions, thereby facilitating mechanistic links between individual behavior and spatial population dynamics.  相似文献   

3.
The Utilitarian Factor in Folk Biological Classification   总被引:3,自引:1,他引:2  
  相似文献   

4.
Immune synapses formed by T and NK cells both show segregation of the integrin ICAM1 from other proteins such as CD2 (T cell) or KIR (NK cell). However, the mechanism by which these proteins segregate remains unclear; one key hypothesis is a redistribution based on protein size. Simulations of this mechanism qualitatively reproduce observed segregation patterns, but only in certain parameter regimes. Verifying that these parameter constraints in fact hold has not been possible to date, this requiring a quantitative coupling of theory to experimental data. Here, we address this challenge, developing a new methodology for analysing and quantifying image data and its integration with biophysical models. Specifically we fit a binding kinetics model to 2 colour fluorescence data for cytoskeleton independent synapses (2 and 3D) and test whether the observed inverse correlation between fluorophores conforms to size dependent exclusion, and further, whether patterned states are predicted when model parameters are estimated on individual synapses. All synapses analysed satisfy these conditions demonstrating that the mechanisms of protein redistribution have identifiable signatures in their spatial patterns. We conclude that energy processes implicit in protein size based segregation can drive the patternation observed in individual synapses, at least for the specific examples tested, such that no additional processes need to be invoked. This implies that biophysical processes within the membrane interface have a crucial impact on cell:cell communication and cell signalling, governing protein interactions and protein aggregation.  相似文献   

5.
The complete static behavior of a large class of unstructured models of continuous bioprocesses is classified using elementary concepts of the singularity theory and continuation techniques. The class consists of models for which the cell growth rate is proportional to the rate of utilization of limiting substrate while the kinetics of cell growth, utilization of limiting substrate and synthesis of the desired non-biomass product are allowed to assume general forms of substrate and product. This class of models was used extensively in the literature to model fermentation processes. Global analytical conditions are derived that allow the construction of a practical picture in the multidimensional parameter space delineating the different static behavior these models can predict, including unique steady states, coexistence of wash-out conditions with non-trivial steady states and multistability resulting from hysteresis. These general results are applied to a number of experimentally validated models of fermentation processes, and allow the study of the effect of kinetic and operating parameters on the stability characteristics of these models. Practical criteria are also derived for the safe operation of the bioprocesses.  相似文献   

6.
Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The ‘communities’ of questionnaire items that emerge from our community detection method form possible ‘functional constructs’ inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such ‘functional constructs’ suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling.  相似文献   

7.
A receptive field constitutes a region in the visual field where a visual cell or a visual operator responds to visual stimuli. This paper presents a theory for what types of receptive field profiles can be regarded as natural for an idealized vision system, given a set of structural requirements on the first stages of visual processing that reflect symmetry properties of the surrounding world. These symmetry properties include (i) covariance properties under scale changes, affine image deformations, and Galilean transformations of space–time as occur for real-world image data as well as specific requirements of (ii) temporal causality implying that the future cannot be accessed and (iii) a time-recursive updating mechanism of a limited temporal buffer of the past as is necessary for a genuine real-time system. Fundamental structural requirements are also imposed to ensure (iv) mutual consistency and a proper handling of internal representations at different spatial and temporal scales. It is shown how a set of families of idealized receptive field profiles can be derived by necessity regarding spatial, spatio-chromatic, and spatio-temporal receptive fields in terms of Gaussian kernels, Gaussian derivatives, or closely related operators. Such image filters have been successfully used as a basis for expressing a large number of visual operations in computer vision, regarding feature detection, feature classification, motion estimation, object recognition, spatio-temporal recognition, and shape estimation. Hence, the associated so-called scale-space theory constitutes a both theoretically well-founded and general framework for expressing visual operations. There are very close similarities between receptive field profiles predicted from this scale-space theory and receptive field profiles found by cell recordings in biological vision. Among the family of receptive field profiles derived by necessity from the assumptions, idealized models with very good qualitative agreement are obtained for (i) spatial on-center/off-surround and off-center/on-surround receptive fields in the fovea and the LGN, (ii) simple cells with spatial directional preference in V1, (iii) spatio-chromatic double-opponent neurons in V1, (iv) space–time separable spatio-temporal receptive fields in the LGN and V1, and (v) non-separable space–time tilted receptive fields in V1, all within the same unified theory. In addition, the paper presents a more general framework for relating and interpreting these receptive fields conceptually and possibly predicting new receptive field profiles as well as for pre-wiring covariance under scaling, affine, and Galilean transformations into the representations of visual stimuli. This paper describes the basic structure of the necessity results concerning receptive field profiles regarding the mathematical foundation of the theory and outlines how the proposed theory could be used in further studies and modelling of biological vision. It is also shown how receptive field responses can be interpreted physically, as the superposition of relative variations of surface structure and illumination variations, given a logarithmic brightness scale, and how receptive field measurements will be invariant under multiplicative illumination variations and exposure control mechanisms.  相似文献   

8.
We develop and apply a simple model for animal communication in which signalers can use a nontrivial frequency of deception without causing listeners to completely lose belief. This common feature of animal communication has been difficult to explain as a stable adaptive outcome of the options and payoffs intrinsic to signaling interactions. Our theory is based on two realistic assumptions. (1) Signals are "overheard" by several listeners or listener types with different payoffs. The signaler may then benefit from using incomplete honesty to elicit different responses from different listener types, such as attracting potential mates while simultaneously deterring competitors. (2) Signaler and listener strategies change dynamically in response to current payoffs for different behaviors. The dynamic equations can be interpreted as describing learning and behavior change by individuals or evolution across generations. We explain how our dynamic model differs from other solution concepts from classical and evolutionary game theory and how it relates to general models for frequency-dependent phenotype dynamics. We illustrate the theory with several applications where deceptive signaling occurs readily in our framework, including bluffing competitors for potential mates or territories. We suggest future theoretical directions to make the models more general and propose some possible experimental tests.  相似文献   

9.
Gene perturbation and intervention in probabilistic Boolean networks   总被引:3,自引:0,他引:3  
MOTIVATION: A major objective of gene regulatory network modeling, in addition to gaining a deeper understanding of genetic regulation and control, is the development of computational tools for the identification and discovery of potential targets for therapeutic intervention in diseases such as cancer. We consider the general question of the potential effect of individual genes on the global dynamical network behavior, both from the view of random gene perturbation as well as intervention in order to elicit desired network behavior. RESULTS: Using a recently introduced class of models, called Probabilistic Boolean Networks (PBNs), this paper develops a model for random gene perturbations and derives an explicit formula for the transition probabilities in the new PBN model. This result provides a building block for performing simulations and deriving other results concerning network dynamics. An example is provided to show how the gene perturbation model can be used to compute long-term influences of genes on other genes. Following this, the problem of intervention is addressed via the development of several computational tools based on first-passage times in Markov chains. The consequence is a methodology for finding the best gene with which to intervene in order to most likely achieve desirable network behavior. The ideas are illustrated with several examples in which the goal is to induce the network to transition into a desired state, or set of states. The corresponding issue of avoiding undesirable states is also addressed. Finally, the paper turns to the important problem of assessing the effect of gene perturbations on long-run network behavior. A bound on the steady-state probabilities is derived in terms of the perturbation probability. The result demonstrates that states of the network that are more 'easily reachable' from other states are more stable in the presence of gene perturbations. Consequently, these are hypothesized to correspond to cellular functional states. AVAILABILITY: A library of functions written in MATLAB for simulating PBNs, constructing state-transition matrices, computing steady-state distributions, computing influences, modeling random gene perturbations, and finding optimal intervention targets, as described in this paper, is available on request from is@ieee.org.  相似文献   

10.
Growth of fission yeast at the ends of its cylindrical cells switches from a monopolar to a bipolar mode, before it ceases during mitosis and cell division. Here we assume that these growth modes correspond to three stable states of an underlying regulatory circuit, which is a relatively simple and to a large degree autonomous subsystem of an otherwise complex cellular control system. We develop a switch-like logical circuit based on three elements defined as binary variables. Effects of circuit variables on each other are expressed in terms of logical operations. We analyse this circuit for its behavior ("phenotypes") after removing single or multiple operations ("mutants"). Known fission yeast polarity mutants such as those defective in the switch to bipolar growth can be classified based on these predicted 'phenotypes'. Differences in growth patterns between daughter cells in different bipolar growth mutants are also predicted by the circuit model. The model presented here should provide a useful framework to guide future experiments into mechanisms of cellular polarity. This paper illustrates the usefulness of simple logical circuits to describe and dissect features of complex regulatory processes such as the fission yeast growth patterns in both wild type and mutant cells.  相似文献   

11.
Crop pests are responsible for serious economic loss around the worldwide. Accurate recognition of pests is the key to pest control and is a considerable challenge in farming. Deep learning models have shown great promise in image recognition, drawing the attention of many agricultural experts. However, the lack of pest image datasets and the inexplicability of deep learning models have hindered the development of deep learning models in the field of pest recognition. Our work provides the following four contributions: (1) We constructed a new and more effective dataset, for crop pest recognition, named IP41 comprising 46,567 original images of crop pests in 41 classes. (2) We trained three different deep learning models based on IP41, using transfer learning combined with fine-tuning. The results of the three deep learning models exceeded 80.00% recognition. (3) A negative sample judgment method was proposed to exclude the uploaded pest-free images of the user. (4) We provided reasonable visual explanations for the most critical areas of the recognition layers by using the gradient-weighted class activation mapping method. This research suggests that the recognition process focuses more on image details than the image as a whole, and that overall difference is ignored to a certain extent. These results will be helpful to future research in the field of agricultural pest recognition  相似文献   

12.
We have developed a method for representing biological pathways and simulating their behavior based on the use of stochastic activity networks (SANs). SANs, an extension of the original Petri net, have been used traditionally to model flow systems including data-communications networks and manufacturing processes. We apply the methodology to the blood coagulation cascade, a biological flow system, and present the representation method as well as results of simulation studies based on published experimental data. In addition to describing the dynamic model, we also present the results of its utilization to perform simulations of clinical states including hemophilia's A and B as well as sensitivity analysis of individual factors and their impact on thrombin production.  相似文献   

13.
An edge-detection approach to investigating pigeon navigation   总被引:1,自引:0,他引:1  
This study brings together work in pattern recognition and animal behaviour. By applying algorithms in pattern recognition, we examined how visual landscape information influences pigeons' homing behaviour. We used an automated procedure (Canny edge detector) to extract edges from an aerial image of the experimental terrain. Analysis of pigeons' homing routes recorded using global positioning system (GPS) trackers showed that the chosen homing paths, as well as changes in the birds' navigational states, tended to coincide with these edges. This study demonstrates that some edge-containing land features attract homing pigeons and trigger changes in their navigational states.  相似文献   

14.
We report results on unsupervised organization of cervical cells using microscopy of Pap‐smear samples in brightfield (3‐channel color) as well as high‐resolution quantitative phase imaging modalities. A number of morphological parameters are measured for each of the 1450 cell nuclei (from 10 woman subjects) imaged in this study. The principal component analysis (PCA) methodology applied to this data shows that the cell image clustering performance improves significantly when brightfield as well as phase information is utilized for PCA as compared to when brightfield‐only information is used. The results point to the feasibility of an image‐based tool that will be able to mark suspicious cells for further examination by the pathologist. More importantly, our results suggest that the information in quantitative phase images of cells that is typically not used in clinical practice is valuable for automated cell classification applications in general.   相似文献   

15.
The development of continuous culture techniques 60 years ago and the subsequent formulation of theory and the diversification of experimental systems revolutionised microbiology and heralded a unique period of innovative research. Then, progressively, molecular biology and thence genomics and related high-information-density omics technologies took centre stage and microbial growth physiology in general faded from educational programmes and research funding priorities alike. However, there has been a gathering appreciation over the past decade that if the claims of systems biology are going to be realised, they will have to be based on rigorously controlled and reproducible microbial and cell growth platforms. This revival of continuous culture will be long lasting because its recognition as the growth system of choice is firmly established. The purpose of this review, therefore, is to remind microbiologists, particularly those new to continuous culture approaches, of the legacy of what I call the first age of continuous culture, and to explore a selection of researches that are using these techniques in this post-genomics age. The review looks at the impact of continuous culture across a comprehensive range of microbiological research and development. The ability to establish (quasi-) steady state conditions is a frequently stated advantage of continuous cultures thereby allowing environmental parameters to be manipulated without causing concomitant changes in the specific growth rate. However, the use of continuous cultures also enables the critical study of specified transition states and chemical, physical or biological perturbations. Such dynamic analyses enhance our understanding of microbial ecology and microbial pathology for example, and offer a wider scope for innovative drug discovery; they also can inform the optimization of batch and fed-batch operations that are characterized by sequential transitions states.  相似文献   

16.
In order to better understand the changes in DNA organization during the cell cycle, we quantified the chromatin texture of breast epithelial cells and followed its evolution through a cell cycle. The diversity of quiescent cell states led us to limit this study to proliferating cell phases, and to choose a cell line with no G0 cells, the MDA AG cell line. We recently developed a methodology for characterizing in situ the cell cycle of breast epithelial cell lines using a cell image processor. This method is based on 15 densitometric and texture parameters computed on individual Feulgen-stained nuclei and on multiparametric analysis of the resulting data. Chromatin pattern assessment is based on nine texture parameters measured from grey-level co-occurrence and run-length section matrices. In the present study, texture parameter computation showed gradual and progressive modifications of nuclear texture. While discrimination of G1, G2 and M phases was possible, we could not discriminate G1 from S and S from G2. The chromatin pattern (defined by these nine parameters) in the G1 and early S phases, on the one hand, and in the late S and G2 phases, on the other hand, were similar. The parameter values of cells in the S phase progressively increased from G1 to G2. Two interphase chromatin condensation states were distinguished in these breast cells: a base state characteristic of a prereplicative stage and a very granular state characteristic of a postreplicative stage. We hypothesized that S cells are a blend of these two states, the evolution of a non-duplicated state toward a duplicated one.  相似文献   

17.
Physiological state control of fermentation processes   总被引:1,自引:0,他引:1  
In this article a novel approach to the control of fermentation processes is introduced. A "physiological state control approach" has been developed using the concept of representing fermentation processes through the current physiological state of the cell culture. No conventional mathematical model is required for the synthesis of such a control system.The main idea is based on the fact that during batch, feed-batch, or even continuous cultivation the physiological characteristics of the cell population, jointly expressed by the term "physiological state", are not constant but rather variable, which is reflected in expected or unexpected changes in the behavior of the control plant, and which requires flexible alteration of the current control strategy. The proposed approach involves decomposition of the physiological state space into several subspaces called "physiological situations." In every physiological situation the cell population expresses stable characteristics, and therefore an invariant control strategy can be effectively applied. The on-line functions of the physiological state control system consist of the calculation of physiological state variables, determination of the current physiological situation as an element of a previously defined set of known physiological situations, switching of the relevant control strategy, and calculation of the control action. Attention is focused on the synthesis of the novel and nonstandard part of the control system - the algorithm for online recognition of the current physiological state. To this end an effective approach, based on artificial intelligence methods, particularly fuzzy sets theory and pattern recognition theory, was developed. Its practical realization is demonstrated using data from a continuous fermentation process for single cell protein production.  相似文献   

18.
OBJECTIVE: To design an automatic system for recognition and count of two different cell families on histologic slides. STUDY DESIGN: The segmentation strategy uses color information on the image. The morphologic operations and Support Vector Machine approaches are used for each color to obtain precise segmentation of the image into separate cells for recognition. RESULTS: A large set of histologic slides of bone marrow was assessed byour system and the results compared to the score of a human expert. The results are in good agreement. The difference is within acceptable limits (below 10%). CONCLUSION: The automatic system of cell recognition and extraction is accurate and provides a useful tool for cell recognition and count on histologic slides.  相似文献   

19.
This work shows methodological aspects of heuristic pattern recognition in auditory evoked potentials. A linear and a nonlinear transformation based on wavelet transform are presented. They result in a statistical error model and an entropy function related to the Gibbs function and describe changes in midlatency auditory evoked potentials induced by general anaesthesia. The same transformations were calculated using 12 common wavelets. We present a method to compare the two defined parametrizations with respect to their ability to discriminate two defined states which is responsive and unresponsive depending on the wavelet used for the analysis. Auditory evoked potentials of 60 patients undergoing general anaesthesia were analysed. We propose the defined statistical error model and the entropy function as a very robust measure of changes in auditory evoked potentials. The influence of the wavelets suggest that for each parametrization the goodness of the wavelet should be validated.  相似文献   

20.
The most significant environmental benefit of recycling or reusing a wide range of products and materials is typically the potential to displace primary material production; lack of displacement significantly reduces the environmental benefits of these activities. Because no consensus method to estimate displacement rate has emerged, environmental assessments have tended to assume that displacement occurs on a one‐to‐one basis. However, displaced production is a complex phenomenon governed primarily by market mechanisms, rather than physical relationships. This article advances the understanding of displacement by presenting a market‐based framework describing the displacement relationship and a methodology for quantifying displacement rate based on partial equilibrium modeling. Using this methodology, a general symbolic equation for displacement rate after an increase in recycling is derived. The model highlights the market mechanisms that govern displaced production and identifies five price response parameters that affect displacement rate. Results suggest that one‐to‐one displacement occurs only under specific parameter restrictions that are unlikely in competitive commodity markets, but zero displacement is possible if secondary materials are poor substitutes for primary materials; displacement is likely to be reduced if secondary materials have inferior technical properties. The presented methodology can be generally applied to any system in which recycled or reused materials are substitutes or complements for primary materials. Implications for improving recycling and reuse efficacy and environmental assessment methodology are discussed, and suggestions are presented for expanding the displacement methodology in future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号