首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Previously it was shown in rabbits that 20-40% of the injected dose of chylomicrons was cleared from the plasma by perisinusoidal bone marrow macrophages. The present study was undertaken to determine whether the bone marrow of other species also cleared significant amounts of chylomicrons. Canine chylomicrons, labeled in vivo with [14C]cholesterol and [3H] retinol, were injected into marmosets (a small, New World primate), rats, guinea pigs, and dogs. Plasma clearance and tissue uptake of chylomicrons in these species were contrasted with results obtained in rabbits in parallel studies. The chylomicrons were cleared rapidly from the plasma in all animals; the plasma clearance of chylomicrons was faster in rats, guinea pigs, and dogs compared with their clearance from the plasma of rabbits and marmosets. The liver was a major site responsible for the uptake of these lipoproteins in all species. However, as in rabbits, the bone marrow of marmosets accounted for significant levels of chylomicron uptake. The uptake by the marmoset bone marrow ranged from one-fifth to one-half the levels seen in the liver. The marmoset bone marrow also took up chylomicron remnants. Perisinusoidal macrophages protruding through the endothelial cells into the marrow sinuses were responsible for the accumulation of the chylomicrons in the marmoset bone marrow, as determined by electron microscopy. In contrast to marmosets, chylomicron clearance by the bone marrow of rats, guinea pigs, and dogs was much less, and the spleen in rats and guinea pigs took up a large fraction of chylomicrons. The uptake of chylomicrons by the non-human primate (the marmoset), in association with the observation that triglyceride-rich lipoproteins accumulate in bone marrow macrophages in patients with type I, III, or V hyperlipoproteinemia, suggests that in humans the bone marrow may clear chylomicrons from the circulation. It is reasonable to speculate that chylomicrons have a role in the delivery of lipids to the bone marrow as a source of energy and for membrane biosynthesis or in the delivery of fat-soluble vitamins.  相似文献   

2.
Like rat C apolipoproteins, each of the C apolipoproteins from human blood plasma (C-I, C-II, C-III-1, and C-III-2) bound to small chylomicrons from mesenteric lymph of estradiol-treated rats and inhibited their uptake by the isolated perfused rat liver. This inhibitory effect of the C apolipoproteins was independent of apolipoprotein E, which is present only in trace amounts in these chylomicrons. Addition of rat apolipoprotein E to small chylomicrons from mesenteric lymph of normal rats did not displace C apolipoproteins and had no effect on the uptake of these particles by the perfused liver, indicating that an increased ratio of E apolipoproteins to C apolipoproteins on chylomicron particles, unaccompanied by depletion of the latter, may not promote recognition by the chylomicron remnant receptor. The hepatic uptake of remnants of rat hepatic very low density lipoproteins (VLDL) and small chylomicrons, which had been produced in functionally eviscerated rats, was also inhibited by addition of C apolipoproteins. These observations are consistent with the hypothesis that the addition of all of the C apolipoproteins to newly secreted chylomicrons and VLDL inhibits premature uptake of these particles by the liver and that depletion of all of these apolipoproteins from remnant particles facilitates their hepatic uptake. Remnants of chylomicrons and VLDL incubated with rat C apolipoproteins efficiently took up C-III apolipoproteins, but not apolipoprotein C-II (the activator protein for lipoprotein lipase). Preferential loss of apolipoprotein C-II during remnant formation may regulate the termination of triglyceride hydrolysis prior to complete removal of triglycerides from chylomicrons and VLDL.  相似文献   

3.
Chylomicrons labeled with [3H]cholesterol and [14C]triglyceride fatty acids were lipolyzed by hepatic lipase (HL) in vitro and then injected intravenously into normal mice fed low- or high-fat diets, and into apolipoprotein (apo) E-deficient mice. In normal mice fed the high-fat diet and injected with non-lipolyzed chylomicrons, the plasma clearance and hepatic uptake of the resulting [3H]cholesterol-labeled remnants was markedly inhibited. In contrast, chylomicrons lipolyzed by HL were taken up equally rapidly by the livers of mice fed the low- and high-fat diets. The removal of non-lipolyzed chylomicrons lacking apoE from the plasma of apoE-deficient mice was inhibited, but not the removal of chylomicrons lipolyzed by HL. Pre-injection of lactoferrin into normal mice inhibited the plasma clearance of both non-lipolyzed chylomicrons and chylomicrons lipolyzed by HL. The removal of HL from the surface of the lipolyzed particles by proteolytic digestion did not affect their rapid uptake, indicating that the hepatic recognition of the lipoproteins was not mediated by HL. These observations support previous findings that phospholipolysis of chylomicrons by hepatic lipase generates remnant particles that are rapidly cleared from circulation by the liver. They also support the concept that chylomicron remnants can be taken up by the liver by an apolipoprotein E-independent mechanism. We hypothesize that this mechanism is modulated by the remnant phospholipids and that it may involve their interaction with a phospholipid-binding receptor on the surface of hepatocytes such as the class B scavenger receptor BI.  相似文献   

4.
Normal human monocyte-macrophages were cholesterol-loaded, and the rates of uptake and degradation of several lipoproteins were measured and compared to rates in control cells. Receptor activities for 125I-rabbit beta-very low density lipoproteins (beta-VLDL), 125I-human low density lipoprotein, and 125I-human chylomicrons were down-regulated in cholesterol-loaded cells; however, the rate of uptake and degradation of 125I-human chylomicron remnants was unchanged from control cells. Cholesterol-loaded alveolar macrophages from a Watanabe heritable hyperlipidemic rabbit, which lack low density lipoprotein receptors, showed receptor down-regulation for 125I-beta-VLDL but not for 125I-human chylomicron remnants. In addition to chylomicron remnants, apo-E-phospholipid complexes competed for 125I-chylomicron remnant uptake, but apo-A-I-phospholipid complexes did not. Chylomicrons competed for lipoprotein uptake in control cells but were not recognized under conditions of cholesterol loading. Chylomicron remnants and beta-VLDL were equally effective in competing for 125I-beta-VLDL and 125I-chylomicron remnant uptake in cholesterol-loaded macrophages. When normal human monocyte-macrophages were incubated in serum supplemented with chylomicron remnants, the cholesteryl ester content increased 4-fold over cells incubated in serum with low density lipoprotein added. We conclude: 1) specific lipoprotein receptor activity persists in cholesterol-loaded cells; 2) this receptor activity recognizes lipo-proteins (at least in part) by their apo-E content; and 3) cholesteryl ester accumulation can occur in monocyte-macrophages incubated with chylomicron remnants.  相似文献   

5.
Human patients with familial hypercholesterolemia (FH) and Watanabe heritable hyperlipidemic rabbits (WHHL), while lacking normal receptors recognizing low-density lipoproteins (LDL), are said to have normal clearance of chylomicrons. In the present study, emulsions with a similar lipid composition to chylomicrons were injected intravenously in homozygous WHHL rabbits and normal control rabbits fed diet with low or high cholesterol. Radioactive labels tracing emulsion triolein and cholesteryl oleate were both removed rapidly from the bloodstream, with the removal rate of triolein always faster than that of cholesteryl oleate. This pattern was similar to the clearance of normal chylomicrons in rabbits or rats, and was consistent with the formation of remnant lipoproteins after hydrolysis of emulsion triolein by lipoprotein lipase, followed by hepatic uptake of the remnants. The removal of cholesteryl oleate was significantly slower in WHHL rabbits than in normal controls, suggesting that the absence of LDL receptor function led to impaired remnant clearance. Measured in post-heparin plasma, the activity of lipoprotein lipase was decreased in WHHL rabbits, but this was not associated with clear evidence of defective lipolysis of emulsion triolein. Apolipoprotein E did not appear to be deficient in WHHL rabbits. Plasma devoid of lipoproteins less than 1.006 g/ml from WHHL and normal control rabbits transferred similar amounts of apolipoprotein E to chylomicron-like emulsions after incubation. Impaired clearance of chylomicron remnants possibly contributes to the hypertriglyceridemia of WHHL rabbits and to accelerated atherogenesis when the function of LDL receptors is defective.  相似文献   

6.
Binding and uptake of rat chylomicrons of different metabolic stages by the hepatic low-density-lipoprotein (LDL) receptor were studied. Pure chylomicrons, characterized by apolipoprotein B-48 devoid of contaminating B-100, were labelled in their cholesteryl esters. Lymph chylomicrons and serum chylomicrons, enriched in apolipoprotein E and the C-apolipoproteins, bound poorly to rat hepatic membranes. In contrast, chylomicron remnants, containing the apolipoproteins B-48 and E, bound with high affinity. Specific binding of remnants was virtually completely competed for by LDL free of apolipoprotein E. In addition, in ligand blots both remnants and LDL associated with the same protein with an Mr characteristic of the LDL receptor. Uptake of remnants during a single pass through isolated perfused rat livers was decreased to about 50% by an excess of LDL. It is concluded that rat chylomicron remnants are a ligand of the hepatic LDL receptor. The much higher affinity as compared with LDL is mediated by apolipoprotein E but not B-48, and is inhibited by the C-apolipoproteins. This explains why serum chylomicrons are not taken up by the liver, whereas remnants are rapidly removed from the circulation. Results from experiments in vivo suggest that the LDL receptor makes an important contribution to the hepatic uptake of remnants and may be the principal binding site of the liver responsible for remnant removal.  相似文献   

7.
The regulation of the hepatic uptake of chylomicron remnants and very-low-density lipoprotein (VLDL) remnants was studied in the rat using a nonrecirculating liver perfusion system. The hepatic removal of remnant lipoproteins was shown to be by receptor-mediated processes since the concentration-dependent uptake was saturable and reductive methylation of the particles reduced the uptake of each lipoprotein by two-thirds. Treatment of liver donor rats with 17 alpha-ethinyl estradiol resulted in a 2-fold increase in the hepatic uptake of VLDL remnants, while cholesterol feeding of liver donor rats caused complete suppression of the receptor-mediated uptake of VLDL remnants. Chylomicron remnant removal was unaffected by estradiol administration and only slightly diminished by cholesterol feeding. The results of competition studies also indicated that a specific chylomicron remnant receptor exists in the liver. Apoprotein E was shown to be required for the receptor-mediated uptake of both remnant lipoproteins. Chylomicron remnants which contained no apoprotein E and VLDL remnants which contained reductively methylated apoprotein E were removed by the liver to about one-third of the extent of native particles. Thus the hepatic uptake of remnant lipoproteins occurs by receptor-mediated processes and the specific removal of both particles is mediated by apoprotein E. In addition, the uptake of VLDL remnants is regulated by the same factors that control hepatic low-density lipoprotein removal, while chylomicron remnant removal is unaffected by these factors.  相似文献   

8.
Human chylomicrons were isolated from plasma from a subject with familial hypertriglyceridemia and converted to chylomicron remnants by incubation with postheparin plasma. The interaction of these apolipoprotein E-containing, cholesterol-rich human chylomicron remnants with cultured skin fibroblasts was studied. Chylomicron remnants were internalized by skin fibroblasts as a unit, mainly via the low density lipoprotein (LDL)-receptor pathway, resulting in increased cell cholesterol content. After entering the fibroblast, chylomicron remnants stimulated cholesterol esterification, suppressed 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and down-regulated LDL receptor activity similar to the action of LDL. As a function of increasing lipolysis, remnant particles were progressively more effectively taken up by skin fibroblasts, despite a decrease in the apolipoprotein E content per lipoprotein particle. Remnant particles produced after hydrolysis of 70 to 80% of chylomicron triglyceride increased cell cholesterol content to an amount nearly identical to that observed with LDL when the two lipoproteins were incubated at an equal cholesterol concentration. However, when incubated on the basis of equal particle number, chylomicron remnants were 2 to 3 times more effective than LDL in delivering cholesterol to the cells. These results suggest that chylomicron remnants play a role in the regulation of postabsorptive cholesterol homeostasis in nonhepatic cells, and possibly in the pathogenesis of atherosclerosis.  相似文献   

9.
Rat hepatocytes in monolayer cultures take up and degrade cholesteryl ester of isolated chylomicron remnants. The cholesteryl ester of native chylomicrons was metabolized at a slower rate. The uptake of cholesteryl ester was decreased by the presence of serum. The hydrolysis of cholesteryl ester but not the uptake or binding of chylomicron remnants by the cells was inhibited by chloroquine, which is known to inhibit the lysosomal degradation of protein and of low density lipoproteins by fibroblasts. Colchicine, which inhibits the hydrolysis of chylomicron cholesteryl ester after the uptake by the liver in vivo, had the same effect in hepatocyte monolayers.  相似文献   

10.
1. The hepatic metabolism of chylomicrons and chylomicron remnants was compared after adding approximately equal numbers of each lipoprotein particle to the perfusate of isolated livers. 2. At least 40% of the added remnants were metabolized by the liver compared with less than 3% for chylomicrons. 3. There was significantly more net removal of labelled remnants than of chylomicrons by the liver. 4. A greater proportion of labelled cholesterol than of labelled triacylglycerol fatty acids was transferred to the liver from each lipoprotein. 5. Cholesteryl esters of remnants were hydrolysed to triacylglycerol fatty lipoprotein. 5. Cholesteryl esters of remnants were hydrolysed to triacylglycerol fatty acids of remnants were oxidized to CO2 more extensively than those of chylomicrons. 6. There was greater oxidation of remnant glycerolipic [(1(-14)C]oleate than of glycerolipid [1(-14)C]palmitate. 7. A large fraction of the fatty acids of remnants, but not of chylomicrons, was transferred to phospholipids, which were released by the liver in a lipoprotein of relative density less than 1.006. 8. Label from remnants, but not from chylomicrons, was found in lipoproteins of relative density greater than 1.006, which were not released during perfusion but could be flushed out from the liver at the end of perfusion.  相似文献   

11.
The lipids extracted from chylomicrons, chylomicron remnants generated in vivo and hepatic-lipase-treated chylomicrons were emulsified by sonication. These emulsified particles retained the capacity of the native lipoproteins to be differentiated by the liver in vivo, i.e. only the particles derived from remnant and hepatic-lipase-treated chylomicron lipids were efficiently taken up by the liver. To investigate the role of phospholipids in this differentiation process, the phospholipids of all three lipoprotein preparations were separated from the remaining lipids by silicic acid chromatography. The phospholipid-free lipid fraction of chylomicrons was then emulsified with the phospholipids derived from each of the three lipoprotein preparations. Only the particles emulsified with phospholipids derived from remnants and hepatic-lipase-treated chylomicrons were efficiently taken up by the liver in vivo. These results support the proposition that phospholipids modulate the hepatic differentiation between chylomicrons and remnants in vivo.  相似文献   

12.
Remnant lipoproteins as therapeutic targets   总被引:8,自引:0,他引:8  
Increasing evidence suggests that subsets of triglyceride-rich lipoproteins are particularly atherogenic. These include particles with some, but not necessarily all the properties classically attributed to remnants. Cholesteryl ester-enrichment seems to be a common feature of these particles, some of which can be taken up by macrophages by a novel receptor that recognizes species of apolipoprotein B but not apolipoprotein E. These characteristics seem to be common to postprandial and hypertriglyceridemic very low density lipoproteins as well as chylomicron remnants. Remnant-like triglyceride-rich lipoproteins that exhibit several potentially atherogenic properties can be quantified by a simple test that shows promise for identifying individuals at high risk for lesion formation and clinical events. Available hygienic and pharmaceutical measures that effectively lower the concentration of atherogenic triglyceride-rich lipoproteins deserve wider use.  相似文献   

13.
Rat lymph chylomicrons were treated with rat heparin-releasable hepatic lipase (HL) or with bovine milk lipoprotein lipase (LPL). The ability of the resulting particles to be taken up by the liver in vivo was assessed following their infusion into the portal vein of partially hepatectomized animals. The following observations were made: a) the rate of phospholipid depletion, relative to the rate of triglyceride hydrolysis, induced by HL was two- to threefold higher than that observed for LPL; b) the depletion of at least 57% of phospholipids from the surface of HL-treated chylomicrons caused no major alterations in the apoprotein profile of the particles; c) for the same extent of triglyceride hydrolysis, HL-treated chylomicrons were taken up by liver at a rate significantly higher (P less than 0.005) than LPL-treated particles; d) the liver uptake of HL-treated chylomicrons was competitively inhibited by endogenously generated chylomicron remnants, indicating that these two types of lipoproteins share the same process of recognition and uptake by liver cells. It is concluded that the in vivo changes in phospholipid content, or composition, on the surface of chylomicrons during their transformation into remnants, modulate the differentiation of these two particles by the hepatic remnant receptor.  相似文献   

14.
The role of the low density lipoprotein (LDL) receptor in the binding of chylomicron remnants to liver membranes and in their uptake by hepatocytes was assessed using a monospecific polyclonal antibody to the LDL receptor of the rat liver. The anti-LDL receptor antibody inhibited the binding and uptake of chylomicron remnants and LDL by the poorly differentiated rat hepatoma cell HTC 7288C as completely as did unlabeled lipoproteins. The antireceptor antibody, however, decreased binding of chylomicron remnants to liver membranes from normal rats by only about 10%. This was true for intact membranes and for solubilized reconstituted membranes and with both a crude membrane fraction as well as with purified sinusoidal membranes. Further, complete removal of the LDL receptor from solubilized membranes by immunoprecipitation with antireceptor antibody only decreased remnant binding to the reconstituted supernatant by 10% compared to solubilized, nonimmunoprecipitated membranes. Treatment of rats with ethinyl estradiol induced an increase in remnant binding by liver membranes. All of the increased binding could be inhibited by the antireceptor antibody. The LDL receptor-independent remnant binding site was not EDTA sensitive and was not affected by ethinyl estradiol treatment. LDL receptor-independent remnant binding was competed for by beta-VLDL = HDLc greater than rat LDL greater than human LDL (where VLDL is very low density lipoprotein, and HDL is high density lipoprotein). There was weak and incomplete competition by apoE-free HDL, probably due to removal of apoE from the remnant. The LDL receptor-independent remnant-binding site was also present in membranes prepared from isolated hepatocytes and had the same characteristics as the site on membranes prepared from whole liver. In contrast, when chylomicron remnants were incubated with a primary culture of rat hepatocytes, the anti-LDL receptor antibody prevented specific cell association by 84% and degradation of chylomicron remnants completely. Based on these studies, we conclude that although binding of chylomicron remnants to liver cell membranes is not dependent on the LDL receptor, their intact uptake by hepatocytes is.  相似文献   

15.
Tri[14C]acylglycerol-labelled chylomicrons, obtained from cannulated mesenteric lymph of streptozotocin-diabetic donor rats, when intravenously injected into non-diabetic recipient rats, disappeared from the circulation at a significantly slower rate than similarly prepared tri[14C]acylglycerol chylomicrons from non-diabetic donor rats (t1/2, 5.6 +/- 0.7 vs. 3.2 +/- 0.5 min-1, P less than 0.02). The appearance of labelled lipolysis products among plasma lipids (free fatty acid, cholesterol ester and phospholipid fractions) was delayed, indicating decreased availability for lipolysis of the chylomicron-borne triacylglycerol of diabetic origin. Tissue distribution of triacylglycerol, 15 min after the injection of chylomicrons to recipient rats, disclosed a 4-5-fold increase in uptake by muscles (heart and diaphragm) in relation to adipose tissues (epididymal and perirenal sites), in the case of chylomicrons of diabetic derivation. Since a large share of the chylomicron triacylglycerol was taken up by the liver, this tissue was perfused with chylomicron 'remnants' prepared by partial in vitro lipolysis with purified lipoprotein lipase. The 'remnants' of diabetic derivation were taken up by the liver at a 2-3-fold slower rate than those of non-diabetic origin. Chylomicrons derived from diabetic rats were found to be similar in size but markedly depleted of E apolipoproteins as determined by SDS-polyacrylamide gel electrophoresis, isoelectric focussing and a specific immunoassay. Decreases were also seen in A-I apolipoproteins by immunoassay and isoelectric focussing. Chylomicron 'remnants' were also markedly apolipoprotein E-deficient. In vitro incubation of the 'diabetic remnants' with high-density lipoproteins raised their apolipoprotein E content approx. 3-fold and considerably increased their hepatic uptake. Injection of intact chylomicrons preincubated with high-density lipoproteins likewise increased their in vivo removal rate toward the range of that of 'non-diabetic' chylomicrons. We conclude that diabetes-induced changes in the apolipoprotein composition of the chylomicrons and chylomicron remnants play an important role in their removal from the circulation. It appears that their recognition pattern is altered, reducing their ability to interact with receptor sites in the peripheral tissues and the liver, respectively.  相似文献   

16.
The kinetics of chylomicron metabolism have been studied by measuring retinyl palmitate in chylomicrons and their remnants for 10-12 hr following oral administration of vitamin A and Lipomul in three groups of adult male subjects: A) normal plasma triglyceride levels (n = 7); B) endogenous hypertriglyceridemia (n = 12); C) apolipoprotein E (apoE) phenotype E2/2, with Type 3 hyperlipoproteinemia (n = 4) or normal plasma lipids (n = 1). A multicompartmental model was developed using SAAM 27 to characterize the appearance, intravascular metabolism, and clearance from the plasma of retinyl palmitate-labeled dietary lipoproteins. The half-times for retinyl palmitate clearance from the chylomicron remnant fraction (T1/2 REMNANT) were 14.1 +/- 9.7 min in Group A; they were prolonged in Group B (50.7 +/- 20.8 min) and were extremely prolonged for Type 3 subjects in Group C (611.9 +/- 419.9 min). One subject with the apoE 2/2 phenotype and normal plasma triglycerides had a T1/2 REMNANT of 66.8 min. T1/2 REMNANT was highly correlated with fasting plasma triglycerides in Group A and B (r = 0.77, slope = 0.15), and in Group C (r = 0.97, slope = 0.85). These results support the interpretation that delayed chylomicron remnant clearance in subjects with endogenous hypertriglyceridemia may be largely secondary to overproduction of VLDL particles, whose remnants compete with chylomicron remnants for removal by the liver via apoE receptor-mediated endocytosis. The subjects with apoE 2/2 have an additional defect in the removal of chylomicron remnants presumably due to the structural abnormality in their apoE.  相似文献   

17.
A procedure has been developed for the exogenous isotopic labeling of triglyceride-rich lipoproteins (chylomicrons and very low density lipoproteins) using high specific activity radioactive triglyceride in the presence of aqueous dimethyl sulfoxide. The labeled product lipoproteins showed unchanged chemical and physical properties. When the particles had also been labeled biologically by incorporation of unesterified fatty acids into the triglycerides of lipoproteins secreted by liver or intestine, both endogenous and exogenous labels were removed at the same rates in the isolated perfused heart and liver or in intact or functionally hepatectomized rats. These experiments additonally indicated that the triglyceride fatty acid composition of chylomicrons and very low density lipoproteins was unchanged during triglyceride depletion in the peripheral tissues. Using such labeled lipoproteins it has been shown that uptake of remnant lipoprotein cholesteryl ester and triglyceride by the liver is simultaneous. The labeling procedure described should prove suitable for kinetic studies of the disposition of the various lipoprotein non-polar ('core') lipids.  相似文献   

18.
Feeding rabbits 500 mg of cholesterol daily for 4 to 15 days greatly increased the concentration of esterified cholesterol in lipoproteins of d less than 1.006 g/ml. The origin of hypercholesterolemic very low density lipoproteins was investigated by monitoring the degradation of labeled lymph chyomicrons administered to normal and cholesterol-fed rabbits. Chylomicrons were labeled in vivo by feeding either 1) [3H]cholesterol and [14C]oleic acid or 2) [14C]cholesterol and [3H]retinyl acetate. After intravenous injection of labeled chylomicrons to recipient rabbits, [14C]triglyceride hydrolysis was equally rapid in normal and cholesterol-fed animals. Normal rabbits rapidly removed from plasma both labeled cholesteryl and retinyl esters, whereas cholesterol-fed rabbits retained nearly 50% of doubly labeled remnants in plasma 25 min after chylomicron injection. Ultracentrifugal separation of plasma into subfractions of very low density lipoproteins showed that chylomicron remnants in cholesterol-fed animals are found among all subclasses of very low density lipoproteins. Analysis of cholesteryl ester specific activity-time curves for the very low density lipoproteins subfraction from hypercholesterolemic plasma showed that nearly all esterified cholesterol in large very low density lipoproteins and approximately 30% of esterified cholesterol in small very low density lipoproteins was derived from chylomicron degradation. Apparently, nearly two-thirds of the esterified cholesterol in total very low density lipoproteins from moderately hypercholesterolemic rabbits is of dietary origin.  相似文献   

19.
Apolipoprotein (apo)A-IV is synthesized in the small intestine during fat absorption and is incorporated onto the surface of nascent chylomicrons. In circulation, apoA-IV is displaced from the chylomicron surface by high density lipoprotein-associated C and E apolipoproteins; this exchange is critical for activation of lipoprotein lipase and chylomicron remnant clearance. The variant allele A-IV-2 encodes a Q360H polymorphism that increases the lipid affinity of the apoA-IV-2 isoprotein. We hypothesized that this would impede the transfer of C and E apolipoproteins to chylomicrons, and thereby delay the clearance of postprandial triglyceride-rich lipoproteins. We therefore measured triglycerides in plasma, S(f) > 400 chylomicrons, and very low density lipoproteins (VLDL) in 14 subjects heterozygous for the A-IV-2 allele (1/2) and 14 subjects homozygous for the common allele (1/1) who were fed a standard meal containing 50 gm fat per m(2) body surface area. All subjects had the apoE-3/3 genotype. Postprandial triglyceride concentrations in the 1/2 subjects were significantly higher between 2;-5 h in plasma, chylomicrons, and VLDL, and peaked at 3 h versus 2 h for the 1/1 subjects. The area under the triglyceride time curves was greater in the 1/2 subjects (plasma, P = 0.045; chylomicrons, P = 0.027; VLDL, P = 0.063). A post-hoc analysis of the frequency of the apoA-IV T347S polymorphism suggested that it had an effect on triglyceride clearance antagonistic to that of the A-IV-2 allele. We conclude that individuals heterozygous for the A-IV-2 allele display delayed postprandial clearance of triglyceride-rich lipoproteins.  相似文献   

20.
To estimate hepatic uptake of chylomicron remnants in humans, chylomicrons and intestinal very low density lipoproteins (VLDL) were endogenously labeled with retinyl esters, harvested by plasmapheresis, and pulse-injected into the donor 44 hr after plasmapheresis. Plasma decay of retinyl palmitate was measured in eight healthy volunteers. Retinyl palmitate plasma disappearance obeyed an apparent first order function in seven studies and, in one study, a biexponential function with the second, slow exponential accounting for only 13% of the retinyl palmitate plasma decay. The mean fractional removal of rate was 0.037 +/- 0.037 min-1 (mean +/- SD) in a one-compartment model. The apparent volume of distribution, Vd, was 109 +/- 25% of the estimated plasma volume. Plasma clearance of retinyl palmitate was 130 +/- 97 ml/min calculated as Vd x Ke. Mean T 1/2 was 29 +/- 16 min. Both in vitro and in vivo the retinyl palmitate remained largely within chylomicrons and intestinal VLDL. Only 4.3% was transferred from chylomicrons to other lipoprotein classes during in vitro incubation for 5 hr. After plasma was stored for 42 hr, 5% was transferred to higher density lipoproteins. During 12 hr after a test meal containing retinyl palmitate, only 6.4 +/- 1.5% of the retinyl palmitate absorbed was found in the LDL fraction and 3.1 +/- 3.8% in the d 1.063 g/ml lipoproteins. We conclude that retinyl palmitate is a useful marker for chylomicrons and their remnants in humans and that the plasma clearance of retinyl palmitate-labeled chylomicrons is probably an estimate of chylomicron remnant plasma clearance in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号