首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vegetation of a forest-steppe region in Hustain Nuruu, Mongolia, was studied by a phytocoenological approach. Eleven plant communities were recognized, comprising four steppe communities, two meadow communities, a tussock grassland, two shrub communities, a scrub community and a woodland community. The botanical and ecological characteristics of the different communities are discussed, with reference to the existing classification of Mongolian plant communities. Analysis of the present data indicates that a refinement or extension of the classification system is desirable, especially concerning the steppe(-related) communities. Discussion of the relative distribution of steppe and forest reveals that in the relatively dry location of Hustain Nuruu grassland and shrubland dominate the natural vegetation (88% of the area). Forest covers ca. 5% of the area, it is limited to sites where ground water is within rooting depth: north slopes above 1400 m (Betula platyphylla woodland) and along erosion gullies (fragmentary Ulmus pumila gallery woodland). Under natural conditions forest cover might reach 12%, but it is speculated that wild ungulates could maintain its extension at a lower level. The importance of forest is greater in forest-steppe regions with higher rainfall, but the factors determining the distribution of grassland and forest are expected to be similar.  相似文献   

2.
高原湿地纳帕海水生植物群落分布格局及变化   总被引:10,自引:0,他引:10  
肖德荣  田昆  袁华  杨宇明  李宁云  徐守国 《生态学报》2006,26(11):3624-3630
采用3S技术与植物群落研究法,对高原湿地纳帕海24a来的湿地植物群落分布格局及变化的研究结果表明:与24a前水生植物群落相比较。纳帕海水生植物群落类型、数量改变,原生群落不断减少或消失,耐污、喜富营养类群如水葱群落(Com.Scirpus tabernaemontani)、茭草群落(Com.Zizania caduciflora)、穗状狐尾藻群落(Com.Myriophyllum spicatum)、满江红(Com.Azolla imbricata)群落等大量出现;群落总数由24a前的9个增至当前的12个,其中挺水植物群落增加2个,浮叶植物群落增加1个,挺水植物群落增幅最大。由东向西、由南向北,纳帕海水生植物群落分布大致呈现出浮叶群落、挺水群落、沉水群落斑块状依次配置的水平格局规律。挺水植物群落分布面积最大,达528.42hm^2,其次是沉水植物群落,分布面积为362.50hm^2,浮叶植物群落分布面积最小,为70.23hm^2。随沉水群落、浮叶群落向挺水群落的演替,群落伴生种数量增加、优势种优势度减小、层次类型改变,群落结构变得更为复杂。纳帕海湿地水生植物群落分布格局及变化是对湿地环境变化的响应,表明了在人为干扰作用影响下,纳帕海湖岸线内移、水量减少、水质恶化等湿地水文条件的改变,致使湿地生态系统功能不断退化。  相似文献   

3.
4.
New microbial communities often arise through the mixing of two or more separately assembled parent communities, a phenomenon that has been termed “community coalescence”. Understanding how the interaction structures of complex parent communities determine the outcomes of coalescence events is an important challenge. While recent work has begun to elucidate the role of competition in coalescence, that of cooperation, a key interaction type commonly seen in microbial communities, is still largely unknown. Here, using a general consumer-resource model, we study the combined effects of competitive and cooperative interactions on the outcomes of coalescence events. To do so, we simulate coalescence events between pairs of communities with different degrees of competition for shared carbon resources and cooperation through cross-feeding on leaked metabolic by-products (facilitation). We also study how structural and functional properties of post-coalescence communities evolve when they are subjected to repeated coalescence events. We find that in coalescence events, the less competitive and more cooperative parent communities contribute a higher proportion of species to the new community because of their superior ability to deplete resources and resist invasions. Consequently, when a community is subjected to repeated coalescence events, it gradually evolves towards being less competitive and more cooperative, as well as more speciose, robust and efficient in resource use. Encounters between microbial communities are becoming increasingly frequent as a result of anthropogenic environmental change, and there is great interest in how the coalescence of microbial communities affects environmental and human health. Our study provides new insights into the mechanisms behind microbial community coalescence, and a framework to predict outcomes based on the interaction structures of parent communities.  相似文献   

5.
Ponds support a rich biodiversity. This arises in part because of the number and heterogeneity of ponds spatially throughout the landscape. Studies of ponds suggest that distinct communities develop within individual ponds but most examples are based on short-term 1- or 2-year surveys which cannot identify the effects of historic events upon contemporary communities. This study reports the development and turnover of the early summer macroinvertebrate communities in thirty small temporary ponds from their creation in 1994 over 10 years to 2004. Distinct pioneer communities established in the first year of the ponds’ creation, the first 3 years dominated by a fauna associated with long summer dry phases. Then a sustained period of inundation lasting 27 months from summer 1997–1999 resulted in establishment of many taxa associated with permanent ponds and loss of some temporary pond species. The re-establishment of summer dry phases in 1999 was associated with the loss of some but not all of the permanent water taxa and re-colonisation by some temporary water species creating new communities combining these different elements. The communities were not a linear successional sequence; the communities that re-assembled following resumption of dry phases reflected the contingent history of each pond and the effects of historic events. The longer term nature of the study showed that the characteristic heterogeneity of pond invertebrate communities occurs through time as well as spatially and that the richness and variety of contemporary communities, which is often hard to explain from snap-shot studies, is partly the result of historic events.  相似文献   

6.
7.
The relative abundance of suspension- and deposit-feeding organisms in fossil communities has been used to interpret water turbulence in ancient environments. Trophic analysis of modern molluscan communities of San Francisco Bay and of Pliocene macroinvertebrate communities of the Kettleman Hills, California, suggests that the method is only partly valid for inshore environments, which may be more complex than those previously studied. Factors other than water turbulence must explain some differences in trophic proportions. Epifaunal communities consist largely of suspension-feeding organisms regardless of other environmental factors, and relict sediments or sediments out of equilibrium with the normal hydrologic conditions in the area may lead to erroneous interpretations. Analysis of the total benthic macroinvertebrate communities of the southern California shelf indicates that the trophic proportions of the potentially fossilizable part of each community are not the same as the total community and is not always diagnostic of the environment.  相似文献   

8.
A phytosociological survey of seacliff and headland vegetation on the central and south coast of New South Wales was carried out. Analysis of the quadrat data led to the recognition of 15 communities; the occurrence of a number of other vegetation types is briefly discussed. The vegetation types fall into three major groupings: grasslands, scrub and heathland, although the coincidence between structural and floristic boundaries is poor. Ordination of the communities indicates that the major factors varying between communities are exposure and soil fertility, the grasslands and scrubs occurring on more fertile soils than the heathlands. Amongst the woody communities it is suggested that the two major groups recognized fall into different phytosociological alliances, although lack of studies of Australian vegetation limits the applicability of a conventional hierarchical classification. The true heathlands correspond closely with the alliance Leptospermion, previously recognized in Victoria. The scrub communities are assigned to a new alliance, the Westringio-Banksion integrifoliae.  相似文献   

9.
The Quaternary fossil record has abundant evidence for ecologically nonanalogue communities made up of combinations of modern taxa not seen in sympatry today. A brief review of the literature detailing these nonanalogue communities is given with a discussion of their various proposed causes. The individualistic, Gleasonian, response of species to climate and environmental change is favoured by many. The degree to which communities are nonanalogue appears to increase with greater time depth, and this progressive process is a necessary outcome of the individualistic response of species to climate change through time. In addition, it is noted that populations within species, as well as the species as a whole, respond individualistically. This paper proposes that many elements of nonanalogue communities are extinct populations, which may explain their environmentally anomalous combinations. These extinct populations are, by definition, lineages without descendents. It is further proposed that the differential extinction of populations, as a result of continuous ecological reassembly, could amount to a significant evolutionary phenomenon.  相似文献   

10.
Abstract Palaeontological evidence raises several questions that relate to current explanations of ecological communities, to the classification of communities and to interpretations of species richness. The first question relates to the stability of species detected in the fossil record. Coupled with that is the issue of incidental association of species on the same trophic level through differential effects of climatic change on the different species. Such observations are seen to support the ‘individualistic’ concept of communities. Recent statements about this concept leave unresolved questions about the acquisition of adaptation, and about the place of adaptation theory in theories of ecological communities and interpretations of ‘regional species richness’. At issue is whether there is justification for continuing to classify communities as a basis for understanding them. There is good reason to reject this approach for one in which questions about communities and ‘local’ and ‘regional’ species richness are replaced by more specific and basic questions about the relationship between adaptation, distribution and abundance, and ecological interactions. Some recent efforts to incorporate species theory into community theory fail because their basis remains the flawed concept of ‘local community’.  相似文献   

11.
Summary Six major higher plant communities are defined for sub-Antarctic Heard Island: tussock grassland, meadow, herbfield, pool complex, cushion-carpet, fellfield. The communities were mapped at a scale of 1:50000, using colour aerial photographs and field observations. The floristic composition of twelve vegetation transects and of thirty sample quadrats along these is used to describe the communities and identify dominant or indicator species. The vegetation is compared with that of other sub-Antarctic islands.  相似文献   

12.

Background

“The enigma of soil animal species diversity” was the title of a popular article by J. M. Anderson published in 1975. In that paper, Anderson provided insights on the great richness of species found in soils, but emphasized that the mechanisms contributing to the high species richness belowground were largely unknown. Yet, exploration of the mechanisms driving species richness has focused, almost exclusively, on above-ground plant and animal communities, and nearly 35 years later we have several new hypotheses but are not much closer to revealing why soils are so rich in species. One persistent but untested hypothesis is that species richness is promoted by small-scale environmental heterogeneity.

Methodology/Principal Findings

To test this hypothesis we manipulated small-scale heterogeneity in soil properties in a one-year field experiment and investigated the impacts on the richness of soil fauna and evenness of the microbial communities. We found that heterogeneity substantially increased the species richness of oribatid mites, collembolans and nematodes, whereas heterogeneity had no direct influence on the evenness of either the fungal, bacterial or archaeal communities or on species richness of the large and mobile mesostigmatid mites. These results suggest that the heterogeneity-species richness relationship is scale dependent.

Conclusions

Our results provide direct evidence for the hypothesis that small-scale heterogeneity in soils increase species richness of intermediate-sized soil fauna. The concordance of mechanisms between above and belowground communities suggests that the relationship between environmental heterogeneity and species richness may be a general property of ecological communities.  相似文献   

13.
 本文研究了河北省柏各庄垦区主要的水稻—杂草群落,并对优势杂草进行了生物、生态学特性的观察。稻田杂草的生活型以一年生与多年生的为主。它们虽然生长旺盛、繁殖力强,但每种杂草在其生活周期中都有一个生长弱期,即当种子或地下越冬器官的营养物质消耗殆尽而强大的根系尚未形成之前的阶段,这一阶段是杂草的防除适期。稻田中的杂草常与水稻形成具有一定种类组成、结构和外貌的水稻—杂草群落。在不同的生态环境条件下形成不同的群落。但是有许多水稻—杂草群落生态幅度大,可以分布到全国各地。水稻—杂草群落有明显的季节变化和群落演替规律,这不仅决定于杂草本身的生物学特性,而且决定于环境条件及人为影响。了解与掌握群落演替动态,可以及时采取有效措施,控制与防止草害的发生。  相似文献   

14.
The fossil record presents palaeoecological patterns of rise and fall on multiple scales of time and biological organization. Here, we argue that the rise and fall of species can result from a tragedy of the commons, wherein the pursuit of self-interests by individual agents in a larger interactive system is detrimental to the overall performance or condition of the system. Species evolving within particular communities may conform to this situation, affecting the ecological robustness of their communities. Results from a trophic network model of Permian-Triassic terrestrial communities suggest that community performance on geological timescales may in turn constrain the evolutionary opportunities and histories of the species within them.  相似文献   

15.
Phytosociological and habitat studies on the riparian vegetation in the river-lake systems of Krutynia River and upper Szeszupa River (north-eastern Poland) typical of the postglacial lakelands, were conducted. It was demonstrated that the riparian vegetation is composed of communities from the classes: Phragmitetea, Scheuchzerio-Caricetea fuscae, Artemisietea, Molinio-Arrhenatheretea, Alnetea glutinosae and Querco-Fagetea. In the land/water ecotone, these communities are spatially differentiated and often from a zonal pattern. In the waters from the rhizome-root layer (pore waters), the differences in nutrient concentration on transects from riparian plant communities reflect the communities' ability to modify the habitat. The decrease in nutrient concentration while passing through broad zones of either sedge communities or alderwóod and sedge communities may result from nutrient uptake by the components of those communities. The patterns in which sedge communities are forming floating mats, adjoined to the typical littoral or river bed, could be favourable for the protection of river and lake waters. The floating mats reacts elastically to wave action and changes in water level.  相似文献   

16.
The microbial communities inhabiting the mammalian intestinal tract play an important role in diverse aspects of host biology. However, little is known regarding the forces shaping variation in these communities and their influence on host fitness. To shed light on the contributions of host genetics, transmission and geography to diversity in microbial communities between individuals, we performed a survey of intestinal microbial communities in a panel of 121 house mice derived from eight locations across Western Europe using pyrosequencing of the bacterial 16S rRNA gene. The host factors studied included population structure estimated by microsatellite loci and mitochondrial DNA, genetic distance and geography. To determine whether host tissue (mucosa)‐associated communities display properties distinct from those of the lumen, both the caecal mucosa and contents were examined. We identified Bacteroides, Robinsoniella and Helicobacter as the most abundant genera in both the caecal content and mucosa‐associated communities of wild house mice. Overall, we found geography to be the most significant factor explaining patterns of diversity in the intestinal microbiota, with a comparatively weaker influence of host population structure and genetic distance. Furthermore, the influence of host genetic distance was limited to the mucosa communities, consistent with this environment being more intimately coupled to the host.  相似文献   

17.
Quantitative surveys of the vegetation of south-east Polynesian Islands are rarely undertaken owing to time and logistical restrictions; however they are fundamental in determining the conservation status of fragile island ecosystems. The aim of the research was to document quantitatively the vegetation of Pitcairn Island by investigating whether clearly definable plant communities existed on the island, and the underlying environmental gradients influencing these communities. Initially, 10 x 10 m quadrats were taken from all areas of the island, with environmental parameters recorded for each quadrat. The vegetation was then mapped from high altitude vantage points. Two-way indicator species analysis was used to identify distinct plant communities, and canonical correspondence analysis was used to determine the underlying environmental gradients. The vegetation consists of 14 plant communities: four coastal, six forest, two fernland and two scrub communities. Large areas are covered by non-native scrub vegetation, and by monospecific Syzygium jambos (rose-apple) plantations. Less than 30 % of the island is covered by native forest, and these areas are limited to remote valleys. Fernlands also cover large areas, including both eroding areas and ridge tops. Coastal vegetation comprises rock and cliff communities with limited strand vegetation. The major environmental gradient affecting the composition of the plant communities is altitude, but anthropogenic influences also have a large effect, owing to forest clearance and introduced species. The light environment is affected by the canopy species, and determines what ground flora can develop. Identification of distinct plant communities has allowed for a system of nature reserves to be suggested, which conserve all of these plant communities and a significant proportion of the threatened plant species.  相似文献   

18.
Hypolithic communities represent important reservoirs of microbial life in hyper-arid deserts. A number of studies on the diversity and ecology of these communities from different geographic areas have been reported in the past decade, but the spatial distribution of the different components of these communities is still not understood. Moss- and cyanobacteria-dominated hypolithic community morphotypes from Miers Valley (McMurdo Dry Valleys, East Antarctica) were analyzed by electron microscopy in order to characterize the microscale spatial structure. The two communities showed a high degree of internal organization, but differing according to the biological composition. In moss-dominated hypoliths, the moss plantlets are intermixed with mineral fragments of soil origin. However, in cyanobacteria-dominated hypoliths, a layered spatial organization was structured by filamentous cyanobacteria and associated extracellular polymeric components. While moss cells were lacking in cyanobacteria-dominated communities, biofilms formed by cyanobacteria and heterotrophic bacteria were observed in both community morphotypes. The water-holding capacity of both live and dead moss cells and the associated organic matrix, together with the protective properties of the extracellular polymeric substances, could facilitate the survival and activity of these communities. Similar structural strategies can favor the survival of microbial communities in different extreme environments.  相似文献   

19.
Facilitation is a positive interaction assembling ecological communities and preserving global biodiversity. Although communities acquire emerging properties when many species interact, most of our knowledge about facilitation is based on studies between pairs of species. To understand how plant facilitation preserves biodiversity in complex ecological communities, we propose to move from the study of pairwise interactions to the network approach. We show that facilitation networks behave as mutualistic networks do, characterized by a nonrandom, nested structure of plant-plant interactions in which a few generalist nurses facilitate a large number of species while the rest of the nurses facilitate only a subset of them. Consequently, generalist nurses shape a dense and highly connected network. Interestingly, such generalist nurses are the most abundant species in the community, making facilitation-shaped communities strongly resistant to extinction, as revealed by coextinction simulations. The nested structure of facilitative networks explains why facilitation, by preventing extinction, preserves biodiversity.  相似文献   

20.
The concepts of elasticity, invulnerability and invadability   总被引:2,自引:0,他引:2  
Users of mathematical models in ecological research have emphasized mathematical elegance in elucidating the dynamics of ecosystem models with fixed collections of state variables instead of addressing the equally important question of what effects a changing ecosystem structure has on the system's dynamics. Our work addresses the effect of invasion on the species composition of communities. In the context of a linear model, we found that as communities were made more complex (in terms of the number of species they contained and the number of interactions among these species) the probability of their being stable decreased, but the probability of their being invulnerable to invasion by other species increased. These results are consistent with the hypothesis that, through time, communities approach an intermediate complexity at which the influences of environmental stochasticity (which tends to destabilize complex communities) and invasion pressure (which tends to add species to simple communities) counterbalance one another. At this intermediate complexity the average rate of change of species composition is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号