首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
More attention is currently being focused on earthworm invasions; however, in many ecosystems the relative abundance of native and invasive earthworm species is unknown. We characterized earthworm populations of two grassland types within the Palouse region: native prairie remnants and Conservation Reserve Program (CRP) set asides planted with exotic grasses. The earthworm community in both grassland types was completely dominated by the exotic-invasive Aporrectodea trapezoides. Only one individual of a native species, Driloleirus americanus (the giant Palouse earthworm), was found in a prairie remnant. No differences were found between prairie remnants and CRP sites for mean earthworm density (24–106 individuals m−2) or fresh weight (12–45 g m−2). Our results suggest that the combined effects of land-use change, habitat fragmentation and competitive interactions have resulted in the decimation of native earthworm populations and dominance of invasive earthworms in native and non-native grasslands of the Palouse region.  相似文献   

2.
In Canada it is generally accepted that most indigenous earthworms did not survive glaciation, and that the majority of the earthworms now inhabiting Canadian soils are relatively recent introductions of European origin. Although these exotic earthworms are generally considered to be beneficial in agricultural soils, their effects can be less benign in forested ecosystems. Studies have shown that invading earthworms can significantly alter the forest floor, affecting the distribution of carbon, nitrogen and other chemicals, roots, microbes and other elements of the soil fauna, and even understory vegetation. This paper summarizes the current distribution of exotic and native earthworm species in Canadian forests and draws on the results of studies of invasion patterns and environmental impacts in northern forests in North America and Europe to discuss potential outcomes for forests in Canada. The potential for variables such as temperature, pH, litter palatability and dispersal, to limit or promote the invasion of exotic earthworms in Canadian forests is discussed, and areas for future research are proposed. The same earthworm species that are invading forests in northern Europe and the US are also invading Canadian forests. Several species of exotic earthworms are already established in a wide range of deciduous and coniferous forest types, including the boreal. Evidence is presented to suggest that further expansion into Canadian forests is likely.  相似文献   

3.
Recent studies on earthworm invasion of North American soils report dramatic changes in soil structure, nutrient dynamics and plant communities in ecosystems historically free of earthworms. However, the direct and indirect impacts of earthworm invasions on animals have been largely ignored. This paper summarizes the current knowledge on the impact of earthworm invasion on other soil fauna, vertebrates as well as invertebrates.Earthworm invasions can have positive effects on the abundance of other soil invertebrates, but such effects are often small, transient, and restricted to habitats with harsh climates or a long history of earthworm co-occurrence with other soil invertebrates. Middens and burrows can increase soil heterogeneity and create microhabitats with a larger pore size, high microbial biomass, and microclimates that are attractive to micro- and mesofauna. Under harsh climatic conditions, the aggregates formed by earthworms may increase the stability of soil microclimates. Positive effects can also be seen when comminution and mucus secretion increase the palatability of unpalatable organic material for microorganisms which are the main food of most micro- and mesofaunal groups. For larger invertebrates or small vertebrates, invasive earthworms may become important prey, with the potential to increase resource availability. In the longer-term, the activity of invading earthworms can have a strong negative impact on indigenous faunal groups across multiple trophic levels. Evidence from field and laboratory studies indicates that the restructuring of soil layers, particularly the loss of organic horizons, physical disturbance to the soil, alteration of understory vegetation, and direct competition for food resources, lead directly and indirectly to significant declines in the abundance of soil micro- and mesofauna. Though studies of invasive earthworm impacts on the abundance of larger invertebrates or vertebrates are generally lacking, recent evidence suggests that reduced abundance of small soil fauna and alteration of soil microclimates may be contributing to declines in vertebrate fauna such as terrestrial salamanders. Preliminary evidence also suggests the potential for earthworm invasions to interact with other factors such as soil pollution, to negatively affect vertebrate populations.  相似文献   

4.
The effects and implications of invasive species in belowground terrestrial ecosystems are not well known in comparison with above-ground terrestrial and marine environments. The study of earthworm invasions in the tropics is limited by a lack of taxonomic knowledge and the potential for loss of species in native habitats due to anthropogenic land use change. Alteration of land use plays a major role in determining the abundance and community structure of earthworms and the establishment of exotic earthworms in areas previously inhabited by worms. Once an exotic species has become established into a new place, site and species characteristics seem to be key factors determining their spread. We reviewed the literature on the distribution and effects of exotic earthworms to understand the interactions of earthworm invasion and land use history in the tropics. Patterns in the abundance, effects and mechanisms of earthworm invasions on ecosystem processes in the tropics are elucidated using Pontoscolex corethrurus as a case study.  相似文献   

5.
Globally, biological invasions can have strong impacts on biodiversity as well as ecosystem functioning. While less conspicuous than introduced aboveground organisms, introduced belowground organisms may have similarly strong effects. Here, we synthesize for the first time the impacts of introduced earthworms on plant diversity and community composition in North American forests. We conducted a meta‐analysis using a total of 645 observations to quantify mean effect sizes of associations between introduced earthworm communities and plant diversity, cover of plant functional groups, and cover of native and non‐native plants. We found that plant diversity significantly declined with increasing richness of introduced earthworm ecological groups. While plant species richness or evenness did not change with earthworm invasion, our results indicate clear changes in plant community composition: cover of graminoids and non‐native plant species significantly increased, and cover of native plant species (of all functional groups) tended to decrease, with increasing earthworm biomass. Overall, these findings support the hypothesis that introduced earthworms facilitate particular plant species adapted to the abiotic conditions of earthworm‐invaded forests. Further, our study provides evidence that introduced earthworms are associated with declines in plant diversity in North American forests. Changing plant functional composition in these forests may have long‐lasting effects on ecosystem functioning.  相似文献   

6.
We examine the patterns of expansion of exotic European earthworms in northeastern Europe and the western Great Lakes region of North America. These areas share many ecological, climatic and historical characteristics and are devoid of indigenous earthworm fauna due to Quaternary glaciations. These regions are being colonized by a similar suite of exotic lumbricid species and it is unlikely that this is the result of chance, but rather indicates that these species have particular characteristics making them successful invaders. The present macro-scale distributions of earthworm species in northern Russia show little connection to the pattern of the last glaciation. Rather, the primary factors that determine the current distributions of earthworm species include climatic conditions, the life history traits of different earthworm species, the suitability of habitat and intensity and patterns of human activity. In the western Great Lakes region of North America, there are three primary factors affecting current distributions of exotic earthworm species including the patterns of human activity and land use practices, the composition of particular source populations of earthworms associated with different vectors of transport and the soil and litter properties of habitats across the region. Disturbance of a habitat does not appear to be a prerequisite to the invasion and establishment of exotic earthworms. Analysis of the macro-scale distributions of Lumbricidae species in northeastern Europe may provide important insights into the potential of invasive European earthworm species to spread in North America, and identify potentially invasive species.  相似文献   

7.

Non-native earthworms can alter ecosystems by modifying soil structure, depredating seeds and seedlings, and consuming soil organic matter, yet the initial responses of plant communities to earthworm invasions remain poorly understood. We assessed the effect of non-native earthworms on seedling survival during germination and after establishment using six native and six non-native plant species grown from seed in single- and multi-species experimental mesocosms. We examined the extent to which earthworms (1) influenced seedling survival, (2) selectively depredated native versus non-native plants, (3) impacted establishment based on seed size and/or root morphology, and (4) shaped community assembly. The effect of earthworms on seedling survival varied temporally and among species but inconsistently with respect to species origin. Differences in seed/seedling survival translated to changes in community assembly. Earthworms tended to reduce species abundance, richness, evenness, and diversity in multi-species mesocosms and led to the divergence of communities by treatment. In general, species with large seeds and fibrous roots dominated communities with earthworms present, whereas species with small seeds and taproots only persisted in multi-species mesocosms without earthworms. Our findings suggest that earthworms act as ecological filters in the early stages of invasion to shape community composition based on plant morphological traits.

  相似文献   

8.
Recent studies document North American earthworm invasions and their profound effects on the structure of the soil profile, which is the habitat for soil microorganisms (mainly fungi and bacteria). Dramatic alterations made to these layers during earthworm invasion significantly change microbial community structure and therefore microbial activities such as C transformations. Understanding the impacts of earthworm invasion on the microbes themselves will give insight into earthworm effects on microbial activities. Bacterial and actinomycete communities in earthworm guts and casts have not been studied in environments recently invaded by earthworms. Earthworm invasion tended to decrease fungal species density and fungal species diversity and richness. The presence of earthworms decreased zygomycete species abundance probably due to disruption of fungal hyphae. Physical disruption of hyphae may also explain decreased mycorrhizal colonization rates, decreased mycorrhizal abundance and altered mycorrhizal morphology in the presence of earthworms. Mixing of organic layers into mineral soil during earthworm invasion tended to decrease microbial biomass in forest floor materials while increasing it in mineral soil. In newly invaded forest soils, microbial respiration and the metabolic quotient tended to decline. In forests where either the microbial community has had time to adapt to earthworm activities, or where the destruction of the forest floor is complete, as in invasions by the Asian Amynthas hawayanus, the presence of earthworms tends to increase the metabolic quotient indicating a shift to a smaller, more active microbial community.  相似文献   

9.
Biological invasions are increasingly recognized as a potent force altering native ecosystems worldwide. Many of the best documented cases involve the massive invasions of North America by plant and animal taxa native to Europe. In this study, we use DNA barcoding to survey the occurrence and genetic structure of two major groups of soil invertebrates in both their native and introduced ranges: Collembola and earthworms. Populations of ten species of earthworms and five species of Collembola were barcoded from both continents. Most of these species exhibited a similar genetic structure of large and stable populations in North America and Europe, a result supporting a scenario of multiple invasions. This was expected for earthworm species involved in human economic activities, but not foreseen for Collembola species de facto unintentionally introduced. This study also establishes that invasive species surveys employing DNA barcoding gain additional resolution over those based on morphology as they allow evaluation of cryptic lineages exhibiting different invasion histories.  相似文献   

10.
Accidental and deliberate introductions of earthworms into agricultural and reclaimed land are natural experiments that provide opportunities to understand the attributes of successful invaders and their impacts on local biota and ecosystem processes. We consider various case studies (e.g., earthworm invasions in agricultural soils in Australia and Brazil) and deliberate introductions of earthworms into reclaimed mine sites, landfills and cutaway peat in the U.K. and Ireland. Invasions of exotic earthworms, such as European Lumbricidae in Australia, have been geographically extensive, but remain very patchy at regional and field scales. Their impacts on soil properties, plant production and other biota are therefore also likely to be patchy. Various methods have been developed to deliberately inoculate exotic earthworms into disturbed lands, with varying degrees of success. The factors controlling success are, in general, poorly understood. A broad range of impacts of invasive earthworms on soil properties (e.g., soil structure, nutrient availability, burial of surface materials, incidence of root diseases) and plant yield and quality have been reported. Less is known of the impacts of invasive earthworms on other soil fauna, but they are likely to occur due to alterations in food availability and habitat structure. Influences on other biota are likely to extend to aboveground communities as well as those belowground. Introductions of earthworms to disturbed lands can yield substantial benefits in agricultural productivity and amelioration of soil degradation. However, the potential impact of the promotion or control of such introductions on non-target biota and ecosystem processes in pristine ecosystems nearby should be considered.  相似文献   

11.
European and Asian earthworm invasions are widespread in North America. European earthworms especially are well-known to cause dramatic changes in ecosystems in northern, formerly glaciated portions of the continent, but less is known about the impacts of earthworm invasions in unglaciated areas inhabited by indigenous earthworms. We monitored fluctuations in the spatial extent of an Amynthas agrestis (Megascolecidae) population in the Great Smoky Mountains National Park in eastern Tennessee, USA. Two years of monthly growing-season observations revealed that the distribution of the earthworm population was dynamic, but overall distribution was closely linked to temperature and moisture with dramatic reductions of earthworm numbers associated with very dry conditions. In plots where A. agrestis were more often detected, we measured increased A-horizon soil aggregation and decreased thickness of the Oe/Oa-horizon. However, A. agrestis was not related to A-horizon microbial biomass, A-horizon C:N, Oi-horizon (litter) thickness, or mass of forest floor (O-horizon). Reductions in millipede species richness and density were associated with frequency of A. agrestis presence, possibly due to direct competition for food resources (Oe/Oa material). This evidence for potentially negative interactions between millipedes and A. agrestis suggests that expansion of the non-native earthworm into new habitats in the Park may alter soil physical properties and could pose a threat to native millipede diversity.  相似文献   

12.
An important aspect of biodiversity is the relative importance of species in the functioning of ecosystems; this is particularly so for the soil biota which regulate organic matter and nutrient dynamics in soil. This paper explores some of the relationships between biodiversity and ecosystem processes, using the example of the nearctic earthworm fauna in the glacial refugium of the southern USA. Competitive exclusion of nearctic earthworm species by exotic species has been postulated but there is little direct evidence of it; habitat alteration is the likely cause of native species decline. Reduced earthworm diversity may or may not strongly affect certain ecosystem processes, but more diverse assemblages may more effectively exploit soil resources and influence a wider array of processes. Nearctic species may be better adapted than exotics to local conditions and thus more strongly influence ecosystem processes. Earthworm communities provide a clear case for the union of functional and taxonomic biodiversity studies, because of the recognized ecological strategies of many species. However, some nearctic taxa may deviate from these strategies. Earthworms utilize course woody debris in forests both as a refuge and a resource, while enhancing the decomposition of wood. Management strategies to maintain or increase biodiversity of soil biota should include residual wood on the forest floor. An important task for ecosystem management is to restore biodiversity in degraded ecosystems; introduction programmes and techniques such as periodic burning may increase the abundance and diversity of native earthworm species. Whole ecosystem conservation and management are probably the most practical ways to conserve biodiversity generally and may be the only ways to maintain soil biodiversity.  相似文献   

13.
The spread of exotic earthworms (‘worming’) and rising temperatures are expected to alter the biological, chemical and physical properties of many ecosystems, yet little is known about their potential interactive effects. We performed a laboratory microcosm experiment to investigate the effects of earthworms (anecic, endogeic, epigeic, or all three together) and 4°C warming on soil water content, litter turnover and seedling establishment of four native and four exotic herbaceous plant species. Warming and worming exerted independent as well as interactive effects on soil processes and plant dynamics. Warming reduced the water content of the upper soil layer, but only in the presence of earthworms. Litter removal increased in the presence of earthworms, the effect being most pronounced in the presence of anecic earthworms at ambient temperature. Exotic plant species were most influenced by earthworms (lower seedling number but higher biomass), whereas natives were most sensitive to warming (higher seedling number). This differential response resulted in significant interaction effects of earthworms and warming on abundance and richness of native relative to exotic plants as well as related shifts in plant species composition. Structural equation modeling allowed us to address possible mechanisms: direct effects of earthworms primarily affected exotic plants, whereas earthworms and warming indirectly and differentially affected native and exotic plants through changes in soil water content and surface litter. Invasive earthworms and warming are likely to interactively impact abiotic and biotic ecosystem properties. The invasion of epigeic and anecic species could select for plant species able to germinate on bare soil and tolerate drought, with the latter becoming more important in a warmer world. Thus earthworm invasion may result in simplified plant communities of increased susceptibility to the invasion of exotic plants.  相似文献   

14.
Invasive species are a leading threat to native ecosystems, and research regarding their effective control is at the forefront of applied ecology. Exotic facilitation has been credited with advancing the success of several aggressive invasive species. Here, we suggest using the knowledge of exotic facilitations to control invasive earthworm populations. In northern hardwood forests, the invasive shrubs Rhamnus cathartica (buckthorn) and Lonicera x bella (honeysuckle) produce high quality leaf litter, and their abundance is positively correlated with exotic earthworms, which increase nutrient cycling rates. We performed an invasive plant removal experiment in two northern hardwood forest stands, one dominated by buckthorn and the other by honeysuckle. Removal of invasive shrubs reduced exotic earthworm populations by roughly 50% for the following 3 years. By targeting invasive species that are part of positive feedback loops, land managers can multiply the positive effects of invasive species removal.  相似文献   

15.
Species diversity of earthworms in tropics is less studied compared to those of the temperate regions. Despite the fact that there have been numerous studies on earthworm diversity in the Western Ghats of India, there still exists scope for more earthworm species which are yet to be described. The present work involves a survey of earthworms in the Nilgiri biosphere reserve (NBR)—a part of a biodiversity hot spot of Western Ghats. Despite being a part of the biodiversity hot spot, studies on earthworm diversity at NBR are very limited. Unless an authentic record of earthworm species is made available, the consequence of human interference, habitat alteration or climate change on the species diversity cannot be assessed. An attempt has been made in this study to conduct a survey of earthworm species available in the selected forest ecosystems of the NBR. The findings of this study have shown that 84.67?% of the earthworm species identified is native, while the rest are exotic. On the basis of total number of earthworms collected, exotics accounted for 1.55?%, indicating the predominance of native species in the study area and indicating that this habitat is less disturbed. Among the species identified from Mukurthi, Priodochaeta pellucida is listed as vulnerable and has never been encountered since its discovery about 100?years ago. Shannon–Weiner indices showed that evergreen forests of Silent Valley have a high species diversity as do shola/grasslands of Mukurthi and moist deciduous forests of Muthanga.  相似文献   

16.
Ants (Hymenoptera: Formicidae) and earthworms (Oligochaeta) are considered ecosystem engineers because they form biogenic structures in the soil that influence resource supply. The objectives of this study were to quantify recovery dynamics of these invertebrate groups across a chronosequence of restored prairies and elucidate whether changes in the abundance and biomass of ants and earthworms were related to key plant and ecosystem properties. We sampled ants and earthworms from cultivated fields, grasslands restored from 1 to 21 years, and native prairie. Ant abundance and biomass peaked between 5 and 8 years of restoration and abundance was 198 times greater than cultivated fields. Earthworm abundance increased linearly across the chronosequence and became representative of native prairie, but all earthworm populations were dominated by European species. Ant abundance and biomass were positively correlated with plant diversity and plant richness, whereas earthworm abundance biomass was only related to surface litter. These results demonstrate that earthworm abundance increases with time since cessation of cultivation and concomitant with prairie establishment, whereas the abundance and biomass of ants are more related to the structure of restored plant communities than time. The dominance of exotic earthworms in these restorations, coupled with their capacity to alter soil properties and processes may represent novel conditions for grassland development.  相似文献   

17.
The introduction, establishment and spread of non-native earthworm species in North America have been ongoing for centuries. These introductions have occurred across the continent and in some ecosystems have resulted in considerable modifications to ecosystem processes and functions associated with above- and belowground foodwebs. However, many areas of North America have either never been colonized by introduced earthworms, or have soils that are still inhabited exclusively by native earthworm fauna. Although several modes of transport and subsequent proliferation of non-native earthworms have been identified, little effort has been made to interrupt the flow of new species into new areas. Examples of major avenues for introduction of earthworms are the fish-bait, horticulture, and vermicomposting industries. In this paper we examine land management practices that influence the establishment of introduced species in several ecosystem types, and identify situations where land management may be useful in limiting the spread of introduced earthworm species. Finally, we discuss methods to regulate the importation of earthworms and earthworm-containing media so that introduction of new exotic species can be minimized or avoided. Although our focus in this paper is necessarily North American, many of the management and policy options presented here could be applicable to the problem of earthworm invasions in other parts of the world.  相似文献   

18.
In the last 10 years, accelerated mineralization of Atrazine (2-chloro-ethylamino-6-isopropylamino-s-triazine) has been evidenced in agricultural soils repeatedly treated with this herbicide. Here, we report on the interaction between earthworms, considered as soil engineers, and the Atrazine-degrading community. The impact of earthworm macrofauna on Atrazine mineralization was assessed in representative soil microsites of earthworm activities (gut contents, casts, burrow linings). Soil with or without earthworms, namely the anecic species Lumbricus terrestris and the endogenic species Aporrectodea caliginosa, was either inoculated or not inoculated with Pseudomonas sp. ADP, an Atrazine-degrading strain, and was either treated or not treated with Atrazine. The structure of the bacterial community, the Atrazine-degrading activity and the abundance of atzA, B and C sequences in soil microsites were investigated. Atrazine mineralization was found to be reduced in representative soil microsites of earthworm activities. Earthworms significantly affected the structure of soil bacterial communities. They also reduced the size of the inoculated population of Pseudomonas sp. ADP, thereby contributing to the diminution of the Atrazine-degrading genetic potential in representative soil microsites of earthworm activities. This study illustrates the regulation produced by the earthworms on functional bacterial communities involved in the fate of organic pollutants in soils.  相似文献   

19.

Deforestation, plantation expansion and other human activities in tropical ecosystems are often associated with biological invasions. These processes have been studied for above-ground organisms, but associated changes below the ground have received little attention. We surveyed rainforest and plantation systems in Jambi province, Sumatra, Indonesia, to investigate effects of land-use change on the diversity and abundance of earthworms—a major group of soil-ecosystem engineers that often is associated with human activities. Density and biomass of earthworms increased 4—30-fold in oil palm and rubber monoculture plantations compared to rainforest. Despite much higher abundance, earthworm communities in plantations were less diverse and dominated by the peregrine morphospecies Pontoscolex corethrurus, often recorded as invasive. Considering the high deforestation rate in Indonesia, invasive earthworms are expected to dominate soil communities across the region in the near future, in lieu of native soil biodiversity. Ecologically-friendly management approaches, increasing structural habitat complexity and plant diversity, may foster beneficial effects of invasive earthworms on plant growth while mitigating negative effects on below-ground biodiversity and the functioning of the native soil animal community.

  相似文献   

20.
Although the predatory and competitive impacts of biological invasions are well documented, facilitation of native species by non-indigenous species is frequently overlooked. A search through recent ecological literature found that facilitative interactions between invasive and native species occur in a wide range of habitats, can have cascading effects across trophic levels, can re-structure communities, and can lead to evolutionary changes. These are critical findings that, until now, have been mostly absent from analyses of ecological impacts of biological invasions. Here I present evidence for several mechanisms that exemplify how exotic species can facilitate native species. These mechanisms include habitat modification, trophic subsidy, pollination, competitive release, and predatory release. Habitat modification is the most frequently documented mechanism, reflecting the drastic changes generated by the invasion of functionally novel habitat engineers. Further, I predict that facilitative impacts on native species will be most likely when invasive species provide a limiting resource, increase habitat complexity, functionally replace a native species, or ameliorate predation or competition. Finally, three types of facilitation (novel, substitutive, and indirect) define why exotic species can lead to facilitation of native species. It is evident that understanding biological invasions at the community and ecosystem levels will be more accurate if we integrate facilitative interactions into future ecological research. Since facilitative impacts of biological invasions can occur with native endangered species, and can have wide-ranging impacts, these results also have important implications for management, eradication, and restoration.Contribution Number 2293, Bodega Marine Laboratory, University of California at Davis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号