首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The freeze-fracture morphology of intracellular and plasma membranes in endocrine and exocrine polypeptide-secreting cells has been studied to detect changes while these membranes interact during secretion. A qualitative and quantitative evaluation of intramembrane particles and filipin binding as indicators of protein and cholesterol content of the membranes, respectively, reveals the following changes. From the forming of the maturing pole of the Golgi complex, membranes lose morphologically detectable protein and gain morphologically detectable cholesterol. The protein-poor, cholesterol-rich secretory granule membrane then interacts with a richly particulate plasma membrane in endocrine cells and with a moderately particulate luminal membrane in exocrine cells. The site of interaction between secretory granule and plasma membrane is characterized by a local clearing of intramembrane particles; by contrast, filipin-binding sites revealing cholesterol are present in this area. In exocrine cells, the fused secretory granule, which is initially rich in filipin-cholesterol complexes and poor in particles, appears to lose progressively its filipin labelling to resemble the poorly labelled luminal membrane. These findings, although they cannot be interpreted definitely at present, clearly show impressive changes of membrane structure along the secretory pathway and suggest that a corresponding degree of functional specialization is needed for proper interaction to occur.  相似文献   

2.
A number of pathways for intracellular membrane traffic have been detected in various cell types. The major established routes are: 1) the lysosomal pathway, which is the major route utilized in phagocytic and cultured cells; 2) the transcellular route, which represents the major type of traffic in nonfenestrated, capillary endothelial cells and which also appears to be the preferred route for the transport of immunoglobulins (intact) across cells; 3) the exocytosis pathway, utilized in secretory cells for discharge of secretory products, and which is also believed to be used for delivery of intrinsic membrane glycoproteins; 4) the plasmalemma to Golgi route, also highly developed in secretory cells, which is believed to be utilized for the recycling of secretory granule membranes; and 5) the biosynthetic pathways for transport of secretory products, lysosomal enzymes, and membrane proteins from the endoplasmic reticulum to the Golgi complex and for transport of lysosomal enzymes from the Golgi complex to lysosomes. It has become clear that cells repeatedly reutilize or recycle the membranes used in these various transport operations. Clathrin-coated vesicles have been found to be involved in transport along all these routes, which suggests that there are multiple populations of coated vesicles with different transport functions in every cell. It has become clear that the Golgi complex is the site where the membrane and product traffic converges and is sorted and directed to its correct destinations. The validation of a transport route from the cell surface to the Golgi complex raises the possibility that bound ligands and membrane constituents could be modified or repaired in transit during recycling through the Golgi complex, which is a biosynthetic compartment.  相似文献   

3.
4.
SEC14p is required for protein transport from the yeast Golgi complex. We describe a quantitative analysis of yeast bulk membrane and Golgi membrane phospholipid composition under conditions where Golgi secretory function has been uncoupled from its usual SEC14p requirement. The data demonstrate that SEC14p specifically functions to maintain a reduced phosphatidylcholine content in Golgi membranes and indicate that overproduction of SEC14p markedly reduces the apparent rate of phosphatidylcholine biosynthesis via the CDP-choline pathway in vivo. We suggest that SEC14p serves as a sensor of Golgi membrane phospholipid composition through which the activity of the CDP-choline pathway in Golgi membranes is regulated such that a phosphatidylcholine content that is compatible with the essential secretory function of these membranes is maintained.  相似文献   

5.
Proteins are sorted and packaged into regulated secretory granules at the trans Golgi network but how such granules form is poorly understood. We are studying Muclin, the major sulfated protein of the mouse pancreatic acinar cell, and what its role may be in zymogen granule formation. Muclin behaves as a peripheral membrane protein localized to the lumen of the zymogen granule but the cDNA for this protein predicts it is a type I membrane protein with a short, 16-amino-acid, cytosolic tail (C-Tail). Using domain-specific antibodies, we demonstrate that Muclin is derived from a precursor, pro-Muclin, which is cleaved to produce Muclin and an approximately 80-kDa membrane glycoprotein (p80). Incubation of pulse-labeled cells at < or = 22 degrees C to block exit from the trans Golgi network also blocks cleavage of pro-Muclin but not sulfation, a trans Golgi network event, suggesting that cleavage occurs in a post-Golgi compartment. After cleavage the two products of pro-Muclin diverge with Muclin remaining in the regulated secretory pathway and p80 trafficking to the apical plasma membrane, presumably via the constitutive-like pathway. When transfected into exocrine AR42J cells, Muclin labeling is perinuclear and in large sub-plasma membrane puncta. Transiently transfected AR42J cells have greater immunolabeling for amylase than nontransfected cells, suggesting a role for Muclin in cargo accumulation in the regulated secretory pathway. A construct with the C-Tail deleted targets to small diffusely-distributed puncta and without the large sub-plasma membrane structures. Thus, the C-Tail is required for proper Muclin targeting. When transfected into neuroendocrine AtT-20 cells Muclin is not colocalized with ACTH in cell processes, and it appears to be constitutively trafficked to the plasma membrane, suggesting that Muclin has exocrine-specific information. We present a working model for pro-Muclin as a Golgi cargo receptor for exocrine secretory granule formation at the trans Golgi network.  相似文献   

6.
Membrane carboxypeptidase E (CPE) is a sorting receptor for targeting prohormones, such as pro-opiomelanocortin, to the regulated secretory pathway in endocrine cells. Its membrane association is necessary for it to bind a prohormone sorting signal at the trans-Golgi network (TGN) to facilitate targeting. In this study, we examined the lipid interaction of CPE in bovine pituitary secretory granule membranes, which are derived from the TGN. We show that CPE is associated with detergent-resistant lipid domains, or rafts, within secretory granule membranes. Lipid analysis revealed that these rafts are enriched in glycosphingolipids and cholesterol. Pulse-chase and subcellular fractionation experiments in AtT-20 cells show that the association of CPE with membrane rafts occurred only after it reached the Golgi. Cholesterol depletion resulted in dissociation of CPE from secretory granule membranes and decreased the binding of prohormones to membranes. In vivo cholesterol depletion using lovastatin resulted in the lack of sorting of CPE and its cargo to the regulated secretory pathway. We propose that the sorting receptor function of CPE necessitates its interaction with glycosphingolipid-cholesterol rafts at the TGN, thereby anchoring it in position to bind to its prohormone cargo.  相似文献   

7.
The distribution of three proteins discharged by regulated exocytosis--growth hormone (GH), prolactin (PRL), and secretogranin II (SgII)--was investigated by double immunolabeling of ultrathin frozen sections in the acidophilic cells of the bovine pituitary. In mammotrophs, heavy PRL labeling was observed over secretory granule matrices (including the immature matrices at the trans Golgi surface) and also over Golgi cisternae. In contrast, in somatotrophs heavy GH labeling was restricted to the granule matrices; vesicles and tubules at the trans Golgi region showed some and the Golgi cisternae only sparse labeling. All somatotrophs and mammotrophs were heavily positive for GH and PRL, respectively, and were found to contain small amounts of the other hormone as well, which, however, was almost completely absent from granules, and was more concentrated in the Golgi complex, admixed with the predominant hormone. Mixed somatomammotrophs (approximately 26% of the acidophilic cells) were heavily positive for both GH and PRL. Although admixed within Golgi cisternae, the two hormones were stored separately within distinct granule types. A third type of granule was found to contain SgII. Spillage of small amounts of each of the three secretory proteins into granules containing predominantly another protein was common, but true intermixing (i.e., coexistence within single granules of comparable amounts of two proteins) was very rare. It is concluded that in the regulated pathway of acidophilic pituitary, cell mechanisms exist that cause sorting of the three secretory proteins investigated. Such mechanisms operate beyond the Golgi cisternae, possibly at the sites where condensation of secretion products into granule matrices takes place.  相似文献   

8.
Polyclonal antibodies to types I and II regulatory (R) subunits of cyclic AMP-dependent protein kinase (cA-PK) were utilized in a post-embedding immunogold-labeling procedure to localize these proteins in rat parotid acinar cells. Both RI and RII were present in the nuclei, cytoplasm, rough endoplasmic reticulum (RER), Golgi apparatus, and secretory granules. In the nuclei, gold particles were mainly associated with the heterochromatin. In the cytoplasm, the label was principally found in areas of RER. Most gold particles were located between adjacent RER cisternae or over their membranes and attached ribosomes; occasional particles were also present over the cisternal spaces. Labeling of the Golgi apparatus was significantly greater than background, although it was slightly lower than that over the RER cisternae. In secretory granules, gold particles were present over the granule content; no preferential localization to the granule membrane was observed. Morphometric analysis revealed equivalent labeling intensities for RI and RII in the cytoplasm-RER compartment. Labeling intensities for RII in the nuclei and secretory granules were about 50% greater than in the cytoplasm-RER, and 3 to 4-fold greater than values for RI in these two compartments. Electrophoresis and autoradiography of the postnuclear parotid-tissue fraction, the contents of purified secretory granules and saliva collected from the main excretory duct, after photoaffinity labeling with [32P]-8-azido-cyclic AMP, revealed the presence of R subunits. Predominantly RII was present in the granule contents and saliva, while both RII and RI were present in the cell extracts. Additionally, R subunits were purified from saliva by affinity chromatography on agarose-hexane-cyclic AMP. These findings confirm the localization of cA-PK in parotid cell nuclei and establish the acinar secretory granules as the source of the cyclic AMP-binding proteins in saliva.  相似文献   

9.
The lectin-gold technique was used to detect Helix pomatia lectin (HPL) binding sites directly on thin sections of rat pancreas embedded in Lowicryl K4M and on freeze-fractured preparations of rat pancreas submitted to fracture label. On thin sections of acinar cells, whereas the content of zymogen granules was negative or weakly labeled, the limiting membrane displayed a high degree of labeling. In the Golgi complex, labeling by HPL was localized on the trans saccules and the limiting membrane of the condensing vacuoles. The latter appeared to be more intensely labeled than the membrane of the zymogen granules. Intense labeling by HPL was also observed along the microvilli and the plasma membrane. In contrast to the weak labeling of the zymogen-granule content, labeling of the acinar lumen was intense. Fracture-label preparations revealed preferential partition of HPL-binding sites to the exoplasmic half of the zymogen-granule and plasma membranes. The population of zymogen granules was, however, heterogeneous with respect to labeling intensity; the exoplasmic fracture-face of the plasma membrane was intensely and uniformly labeled, while the protoplasmic membrane halves were only weakly labeled. These observations were further confirmed and extended by the thin-section fracture-label approach. In addition, favorable profiles of thin sections of freeze-fractured zymogen granules showed that the labeling was not associated with the external surface of the limiting membrane, but rather localized over the exoplasmic fracture-face. We conclude that 1) zymogen granules contain little HPL-binding glycoconjugates, 2) HPL-binding sites are preferentially associated with the exoplasmic half of the zymogen-granule and plasma membranes, and 3) the limiting membrane of the immature condensing vacuoles carries a greater number of HPL-binding sites than that of the mature zymogen granules. These last, in turn, constitute a heterogenous population with respect to labeling density. These results support the current view that glycoconjugates are directed toward the lumen in secretory granules but become external to the cell surface after fusion of the secretory-granule membrane with the plasma membrane. Also, the results reflect membrane modifications during the maturation process of secretory granules in the exocrine pancreas in which glycoproteins are removed from the limiting membrane of the granule to become soluble and secreted with the content.  相似文献   

10.
Direct ferritin immunoelectron microscopy was used to visualize the asialoglycoprotein receptor in various rat liver subcellular fractions. The cytoplasmic surfaces of cytoplasmic organelles such as the rough and smooth microsomes, Golgi cisternae and lysosomes showed hardly any ferritin label exception for the slight labeling of secretory granules found mainly in the light Golgi fraction (GF1). Occasionally, however, open membrane sheet structures, smooth vesicular or tubular structures heavily labeled with ferritin, were present in all these subcellular fractions. These structures probably correspond to fragmented sinusoidal or lateral hepatocyte plasma membranes recovered to these subcellular fractions. When the limiting membranes of the secretion granules were partially broken by mechanical force, a number of ferritin particles frequently were seen attached in large clusters to the luminal surface of the membrane, the cytoplasmic surface of the corresponding domain being slightly labeled. These observations are strong evidence that the receptor protein is never translocated vertically throughout the intracellular transport from ER to plasma membrane via Golgi apparatus and from plasma membrane back to trans-Golgi elements and also in lysosomes, always exposing the major antigenic sites to the luminal or extracellular surface and the minor counterparts to the cytoplasmic surface of the membranes. The receptor protein also is suggested to be concentrated in clusters on the luminal surface of secretion granules when they form on the trans-side of the Golgi apparatus.  相似文献   

11.
In the region of the base of the intestinal crypts undifferentiated goblet cells display a configuration and constellation of organelles and membrane structures that are indicative of their importance for function. These images at this stage of development deliver a scenario of the mechanism of secretory granule production: aggregates of protein vesicles from the "transitional elements" (PALADE) of the granular endoplasmic reticulum are, so to speak, rolled up on the trans side of the Golgi apparatus by inversion of peripheral membrane segments of the innermost Golgi lamellae, thereby forming corpuscles. The origin of the capsulated vacuoles, which contain vesicles as single elements or as conglomerates, is well established. Their capsule consists of a trilaminar external and external and internal membrane; between them lies condensed material of the Golgi apparatus. In the opinion of the present author, the development of the ensheathed vacuoles represents a basic, more general mechanism. In contrast, the further steps of synthesis, for the formation of secretory granules, are more heterogeneous. Condensation of the vesicles and the inner capsular membrane results in the formation of a prosecretory granule, which in the basic element in the process of secretory granule production. The prosecretory granules develop singly or by fusion with other granules to give primary secretory granules. The complexity of this mechanism of secretory granule formation, however, becomes evident when considering the apposition of capsulated vacuoles and prosecretory--primary--secondary secretory granules, of prosecretory and primary secretory granules as well as prosecretory granules and secondary secretory granules. Generally, primary granules show a tendency to become secondary secretory granules or to fuse with them. During maturation of the goblet cells the secretory granules fuse to form larger mucous bodies in the theca by fusion of the laminae of the membranes; a final product, there is a homogeneous mucous mass devoid of membranes.  相似文献   

12.
A novel compositional overlap between membranes of exocrine and endocrine granules, synaptic vesicles, and a liver Golgi fraction has been identified using a monoclonal antibody (SG7C12) raised against parotid secretion granule membranes. This antibody binds secretory carrier membrane proteins with apparent Mr 31,000, 33,000 and 35,000 (designated SCAMPs 31, 33, 35). The proteins are nonglycosylated integral membrane components, and the epitope recognized by SG7C12 is on the cytoplasmic side of the granule membrane. SCAMP 33 is found in all secretory carrier membranes studied so far while SCAMP 35 is found in exocrine and certain endocrine granules and liver Golgi membranes and SCAMP31 only in exocrine granules. They are not related to other similar-sized proteins that have been studied previously in relation to vesicular transport and secretion. Immunocytochemical staining shows that these SCAMPs are highly concentrated in the apical cytoplasm of exocrine cells. Antigens are present not only on exocrine granules and synaptic vesicles but also on other smooth membrane vesicles of exocrine and neural origin as revealed by immunolocalization in subcellular fractions and immunoadsorption to antibody-coated magnetic beads. The wide tissue distribution and localization to secretory carriers and related membranes suggest that SCAMPs 31-35 may be essential components in vesicle-mediated transport/secretion.  相似文献   

13.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

14.
Islet cell autoantigen of 69 kDa (ICA69) is a cytosolic protein of still unknown function. Involvement of ICA69 in neurosecretion has been suggested by the impairment of acetylcholine release at neuromuscular junctions upon mutation of its homologue gene ric-19 in C. elegans. In this study, we have further investigated the localization of ICA69 in neurons and insulinoma INS-1 cells. ICA69 was enriched in the perinuclear region, whereas it did not co-localize with markers of synaptic vesicles/synaptic-like microvesicles. Confocal microscopy and subcellular fractionation in INS-1 cells showed co-localization of ICA69 with markers of the Golgi complex and, to a minor extent, with immature insulin-containing secretory granules. The association of ICA69 with these organelles was confirmed by immunoelectron microscopy. Virtually no ICA69 immunogold labeling was observed on secretory granules near the plasma membrane, suggesting that ICA69 dissociates from secretory granule membranes during their maturation. In silico sequence and structural analyses revealed that the N-terminal region of ICA69 is similar to the region of arfaptins that interacts with ARF1, a small GTPase involved in vesicle budding at the Golgi complex and immature secretory granules. ICA69 is therefore a novel arfaptin-related protein that is likely to play a role in membrane trafficking at the Golgi complex and immature secretory granules in neurosecretory cells.  相似文献   

15.
Outer rootcap cells of maize produce large numbers of secretory vesicles that ultimately fuse with the plasma membrane to discharge their product from the cell. As a result of the fusion, these vesicles contribute large quantities of membrane to the cell surface. In the present study, this phenomenon has been investigated using sections stained with phosphotungstic acid at low pH (PACP), a procedure in plant cells that specifically stains the plasma membrane. In the maize root tip, the PACP also stains the membranes of the secretory vesicles derived from Golgi apparatus to about the same density that it stains the plasma membrane. Additionally, the membranes of the secretory vesicles acquire the staining characteristic while still attached to the Golgi apparatus. The staining progresses across the dictyosome from the forming to the maturing pole, thus confirming the marked polarity of these dictyosomes. Interestingly, the PACP staining of Golgi apparatus is confined to the membranes of the secretory vesicles. It is largely absent from the central plates or peripheral tubules and provides an unambiguous example of lateral differentiation of membranes orthogonal to the major polarity axis. In the cytoplasm we could find no vesicles other than secretory vesicles bearing polysaccharide that were PACP positive. Even the occasional coated vesicle seen in the vicinity of the Golgi apparatus did not stain. Thus, if exocytotic vesicles are present in the maize root cap cell, they are formed in a manner where the PACP-staining constituent is not retained by the internalized membrane. The findings confirm dictyosome polarity in the maize root cap, provide evidence for membrane differentiation both across and at right angles to the major polarity axis, and suggest that endocytotic vesicles, if present, exclude the PACP-staining component.  相似文献   

16.
1. Intact Golgi fractions, three from colchicine- or ethanol-treated rat livers and two from a control, were analyzed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. All the fractions showed very similar electrophoretic profiles with 33 protein bands, some of which, especially albumin, had rather higher density in the secretory vesicle fraction than those in the cisternal fraction. 2. Using albumin as the content marker, the Golgi fractions were subfractionated into membranes and contents by freezing-thawing and sonication followed by centrifugation. Distribution of galactosyltransferase among these membrane preparations showed that this enzyme was more enriched in the Golgi cisternal membranes than in the secretory vesicle membranes. 3. All the membrane preparations from the Golgi complex showed very similar patterns on electrophoresis, which were distinctly different from those of microsomal membranes and of plasma membrane. Furthermore, all the Golgi content subfractions had similar protein components, most of which were also found in serum. The microsomal contents, however, showed a considerably different pattern from those of the Golgi contents. 4. From these results it could be concluded that the secretory vesicles are indeed a member of the Golgi complex despite their different appearance and morphology.  相似文献   

17.
Secretory granules and plasma membranes were isolated from rat parotid cells and characterized enzymatically and by electron microscopy. The proteins of the secretory granule membranes, the secretory granules and the plasma membranes were characterized by two-dimensional polyacrylamide gel electrophoresis and visualized by silver staining. The granule membrane contains 166 polypeptides of which only 26 are also present in the granule contents. The membrane proteins have isoelectric points between 4.75 and 6.45 and apparent molecular weights of 17 000 to 190 000 Daltons. The granule content proteins are surprisingly complex and contain 122 polypeptides with molecular weights of 11 000 to 138 000 and isoelectric points of 4.8 to 6.55. Thirteen of these peptides are present as major species. The plasma membrane contains 172 polypeptide species with molecular weights from 17 000 to 200 000 Daltons and isoelectric points of 5.0 to 6.8. Thirty-five of the plasma membrane proteins are also present in the secretory granule membranes indicating that the two membranes have some enzymatic or structural properties in common. Thus, secretory granule membranes and plasma membranes from parotid cells have a more complex polypeptide composition than has previously been shown for membranes of this type. The systems developed are suitable for the analysis of regulatory events such as protein phosphorylation, proteolytic processing, and other types of post-translational modifications that may be important to the secretory mechanism.  相似文献   

18.
Complexes of protein-A with 5 and 16 nm colloidal gold particles (PA/Au5 and PA/Au16) are presented as sensitive and clean immunoprobes for ultrathin frozen sections of slightly fixed tissue. The probes are suitable for indirect labeling and offer the opportunity to mark multiple sites. The best procedure for double labeling was to use the smaller probe first, i.e., antibody 1 - PA/Au5 - antibody 2 - PA/Au16. When this was done, no significant interference between PA/Au5 and PA/Au16 occurred. Using this double-labeling procedure we made an accurate comparison between the subcellular distributions of amylase as a typical secretory protein and of GP-2 a glycoprotein, characteristic for zymogen granule membrane (ZGM) preparations. We prepared two rabbit antibodies against GP-2. One antibody (R x ZGM) was obtained by immunizing with native membrane material. The specificity of R x ZGM was achieved by adsorption with the zymogen granule content subfraction. The other, R x GP-2, was raised against the GP-2 band of the SDS polyacrylamide profile of ZGM. We found that the carbohydrate moiety of GP-2 was involved in the antigenic determinant for R x ZGM, while R x GP-2 was most likely directed against GP-2 polypeptide backbone. THe immunocytochemical observations showed that GP-2, on the one hand, exhibited the characteristics of a membrane protein by its occurrence in the cell membrane, the Golgi membranes, and its association with the membranes of the zymogen granules. On the other hand, GP-2 was present in the contents of the zymogen granules and in the acinar and ductal lumina. Also, a GP-2-like glycoprotein was found in the cannulated pancreatic secretion (Scheffer et al., 1980, Eur. J. Cell Biol. 23:122-128). Hence, GP-2 should be considered as a membrane-associated secretory protein of the rat pancreas.  相似文献   

19.
The pathway and kinetics of the secretory protein transport in rat lacrimal exorbital gland have been established by an in vitro time- course radioautographic study of pulse-labeled protein secretion. The colchicine-sensitive steps have been localized by using the drug at various times with respect to the pulse labeling of proteins. Colchicine (10 microM) does not block any step of the secretory protein transport, but when introduced before the pulse it decreases the transfer of labeled proteins from the rough endoplasmic reticulum to the Golgi area, suppressing their temporary accumulation in the Golgi area before any alteration of this organelle is detectable. Moreover, colchicine inhibits protein release only from the secretory granules formed in its presence because the peroxidase discharge is diminished 1 h after colchicine addition, and the secretion of newly synthesized proteins is strongly inhibited only when colchicine is introduced before secretory granule formation. Morphometric studies show that there is a great increase of secondary lysosomes, related to crinophagy, as early as 40-50 min after colchicine is added. However, changes in lysosomal enzymatic activities remained biochemically undetectable. We conclude that: (a) the labile microtubular system does not seem indispensable for protein transport in the rough endoplasmic reticulum-Golgi area but may facilitate this step, perhaps by maintaining the spatial organization of this area; and (b) in the lacrimal gland, colchicine inhibits protein release not by acting on the steps of secretion following the secretory granule formation, but by acting chiefly on the steps preceding secretory granule formation, perhaps by making the secretory granules formed in its presence incapable of discharging their content.  相似文献   

20.
After enzyme secretion the membrane of the secretory granule, which had been fused to the cell membrane, was resorbed into the cell. Experiments were therefore carried out to test whether formation of new secretory granules involves reutilization of the resorbed membrane or synthesis of a new membrane, de novo, from amino acids. Incorporation of amino acids-14C into proteins of various cell fractions was measured in vivo, 30, 120, and. 300 min after labeling. At all times the specific radioactivity of the secretory granule membrane was about equal to that of the granule's exportable content. At 120 and 300 min the specific radioactivity of the granule membrane and of the granule content was much higher than that of any other subcellular fraction. It is therefore concluded that the protein of the membrane is synthesized de novo concomitantly with the exportable protein. The proteins of the granule membrane could be distinguished from those of the granule content by gel electrophoresis. All major bands were labeled proportionately to their staining intensity. The amino acid composition of the secretory granule membrane was markedly different from that of the granule's content and also from that of the mitochondrial membrane. The granule membrane showed a high proline content, 30 moles/100 moles amino acids. The analyses show that the radioactivity of the granule membrane is indeed inherent in its proteins and is not due to contamination by other fractions. The possibility is considered that the exportable protein leaves the endoplasmic reticulum already enveloped by the newly synthesized membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号