首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The 2G Triticum timopheevii introgression harbours genes for multiple disease resistance and quality traits in bread wheat. In order to transfer this segment from bread wheat into durum, the bread wheat line Sunguard, which carries this introgressed 2G segment was crossed with three tetraploid durum parents. A significant difference was observed in the segregation ratio of the 2G segment in the different crosses at the F2 generation with two of the three populations indicating segregation distortion against the hexaploid 2G segment. In these populations, the presence of the 2G segment was strongly correlated with the presence of D-genome chromosomes. These results were confirmed in the F4 generation of these populations. Six plants were identified in the F4 generation, which had retained the introgressed 2G segment in a homozygous condition and did not have a complete D-genome set. Two of these lines only had two non-homologous D-genome chromosomes in the F5 generation. Thus, the 2G segment and possibly other translocations can be transferred into durum wheat through hexaploid/tetraploid hybridisation.  相似文献   

2.
The transfer of genes between Triticum aestivum (hexaploid bread wheat) and T. turgidum (tetraploid durum wheat) holds considerable potential for genetic improvement of both these closely related species. Five different T. aestivum/T. turgidum ssp. durum crosses were investigated using Diversity Arrays Technology (DArT) markers to determine the inheritance of parental A, B and D genome material in subsequent generations derived from these crosses. The proportions of A, B and D chromosomal segments inherited from the hexaploid parent were found to vary significantly among individual crosses. F(2) populations retained widely varying quantities of D genome material, ranging from 99% to none. The relative inheritance of bread wheat and durum alleles in the A and B genomes of derived lines also varied among the crosses. Within any one cross, progeny without D chromosomes in general had significantly more A and B genome durum alleles than lines retaining D chromosomes. The ability to select for and manipulate this non-random segregation in bread wheat/durum crosses will assist in efficient backcrossing of selected characters into the recurrent durum or hexaploid genotype of choice. This study illustrates the utility of DArT markers in the study of inter-specific crosses to commercial crop species.  相似文献   

3.
Photosynthetic characteristics of ear and flag leaves of wheat species, tetraploid Triticum dicoccoides Kom and hexaploid Bima1, were studied in plants grown under well-watered (WW) and water-stressed (WS) conditions. Compared to ears, flag leaves exhibited higher photosynthetic rate (P N) at the filling stage, but more severe decrease under WS. P N in the tetraploid wheat ear remained higher than that in the hexaploid wheat during the grain-filling stage. Water stress decreased PN in both the organs; this decline was caused by a reduction in Rubisco activity, not by drought-induced stomatal limitation. Tetraploid wheat ears exhibited higher relative water content and water-use efficiency than that of hexaploid wheat, under WS. The change in phosphoenolpyruvate carboxylase activity and carbon isotope composition indicated the absence of C4 metabolism in the ears of both species under both conditions. The improved performance of the tetraploid wheat ears under WS was associated with better water relations.  相似文献   

4.
Intra- and inter-specific variation in CO2 assimilation rate (A) in Triticum spp. is well documented for reproductive growth stages. Research was conducted to characterize early vegetative photosynthetic variation in a diverse set of cultivated hexaploid wheat (T. aestivum L.) germplasm and in wild tetraploid (T. dicoccoides Korn) and hexaploid x tetraploid populations. Choice of hexaploid genotypes was based on maximum genetic distance between cultivars within the HRW and SRW wheat classes of the USA. The tetraploid material was produced by hybridizing two accessions of T. dicoccoides previously shown to differ widely in A and A/Chl but with similar leaf morphology. Genetic variability in the HRW and SRW gene pools was attributed to more recently developed descendent lines and unrelated lines rather than parental lines. Phenotypic distributions for A, stomatal conductance (gs), and internal CO2 concentration (Ci) in the F2 tetraploid population were continuous and showed transgressive segregation, reflecting quantitative inheritance with intermediate heritability. Variability in A was not associated with chlorophyll content or CO2 supply to the mesophyll measured as Ci. Genetic variability in A was also observed in the interspecific backcross population, 2*TAM W-101/PI 428109, thereby providing a germplasm pool to select for high A while restoring the D genome of hexaploid wheat. These results suggest that genetic improvement of vegetative assimilation rate is feasible in hexaploid wheat via homologous transfer from an alien source.Abbreviations HRW hard red winter - LA leaf area - rG genotypic correlation - rP phenotypic correlation - SRW soft red winter  相似文献   

5.
The gluten proteins document the genotypic identity of a wheat variety, in addition to providing valuable clues about its ancestry and technological properties. In this study, an Indian durum wheat genotype B662 was identified to carry 1BL/1RS translocation and characterized further for its effect on end use quality traits. Comparison of the end use quality traits of B662 with five other durum cultivars without 1BL/1RS, showed decreased gluten content, lower swelling index of glutenins and low MSDS-SV indicating that, B662 with 1BL/1RS is not good for pasta making. In F2:3 seeds from a durum wheat cross between the 1BL/1RS cultivar B662 and HI8498 without the translocation, the secalin Sec-1 loci segregated in theoretically expected 3:1 proportion and were inherited as a block of the rye chromosome arm. The analysis of F2:3 harvests for the two most important durum wheat quality tests showed that the presence of 1BL/1RS translocation did not alter the grain protein content values, but was associated with significant reduction of micro SDS-sedimentation volume indicating inferior quality, thus limiting the commercial exploitation of durum wheat genotypes with 1BL/1RS translocation. The cautious use of rye translocation in Indian durum wheat breeding is suggested.  相似文献   

6.
Powdery mildew, caused by Blumeria graminis f.sp. tritici (Bgt), is a destructive foliar disease of common wheat in areas with cool or maritime climates. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the progenitor of both domesticated tetraploid durum wheat and hexaploid bread wheat, harbors abundant genetic diversity related to resistance to powdery mildew that can be utilized for wheat improvement. An F2 segregating population was obtained from a cross between resistant bread wheat line 2L6 and susceptible cultivar Liaochun 10, after which genetic analysis of F2 and F2-derived F3 families was performed by inoculating plants with isolate Bgt E09. The results of this experiment demonstrated that powdery mildew resistance in 2L6, which was derived from wild emmer wheat accession IW30, was controlled by a single dominant gene, temporarily designated MLIW30. Nineteen SSR markers and two STS markers linked with MLIW30 were acquired by applying bulked segregant analysis. Finally, MLIW30 was located to the long arm of chromosome 4A and found to be flanked by simple sequence repeat markers XB1g2000.2 and XB1g2020.2 at 0.1 cM. Because no powdery mildew resistance gene in or derived from wild emmer wheat has been reported in wheat chromosome 4A, MLIW30 might be a novel Pm gene.  相似文献   

7.
Summary This report deals with a method of analysis which uses existing hexaploid wheat monosomics to establish gene-chromosome associations in a tetraploid variety. Monosomics of Triticum aestivum cv. Chinese Spring belonging to the 14 lines of A and B genomes were crossed as female parents with Triticum durum cv. Capeiti, a spring type at present widely grown in Italy. For each line, two F 1 populations were obtained, normal pentaploids (2 n = 35) and monopentaploid (2 n = 34), in which, in turn, the monosomic A or B chromosome present was supplied by the tetraploid wheat. The morphological and physiological differences observed in the monopentaploid lines are attributed to differential expression of the genetic information concerning the character investigated, carried by the chromosome present in hemizygous condition. Then, only recessive or partially dominant alleles of the variety to be tested can be identified and attributed to a specific chromosome in the F 1 generation.Eight parameters were analyzed: culm and spike length, length and width of 1st (flag) and 2nd uppermost leaves, days from germination to heading and awn development.As far as culm length is concerned, although heterotic effect is present, seven chromosomes seem to be responsible for the modification of this character (1A, 2A, 2B, 3B, 4B, 5B, and 6 A); chromosomes 2A and 2B in particular, carry major factor (s) for plant height. A similar picture is presented by spike length which seems to be controlled by factors located in several chromosomes belonging to homoeologous groups 1, 2, 3 and 5, as well as the chromosome 4B.Leaf length, also, shows a complex pattern of inheritance. Monosomic conditions for chromosomes 1A and 1B increased, while monosomy for 5A and 5B significantly decreased, leaf length. A highly significant correlation was found between the mean lengths of the 1st and 2 nd leaves (= 0.74). Some monosomic lines (4A, 4B, 5A; 5B; 6A; 7A and 7B) had leaves significantly narrower than in the control and only monosomic 2A had broader leaves. The period from germination to heading seems to be influenced by at least 6 chromosomes. Three monosomic lines are significantly earlier (mono 1A, 7A and 5B) and three (mono 5A, 2B and 7B) are significantly later than the hybrid control.Finally, 8 monosomic lines were found to interfere significantly with awn development. Three lines (mono 2A, 2B and 7A) show a decrease and 5 (mono 1B; 3A, 3B; 4B and 6B) show an increase in awn development. On the basis of evidence in the literature and our own results, it appears that this analysis fits previous results perfectly and actually adds to the picture two further awn-promoting factors, A9 and A10, located on the 7A and 1B chromosomes respectively.Contribution n. 220 from the Laboratorio per le Applicazioni in Agricultura del C. N. E. N., Centro Studi Nucleari della Casaccia, S. Maria di Galeria, Roma, Italy.With the technical assistance for cytological and statistical analyses of P. Mannino.  相似文献   

8.
Hexaploid bread wheat was derived from a hybrid cross between a cultivated form of tetraploid Triticum wheat (female progenitor) and a wild diploid species, Aegilops tauschii Coss. (male progenitor). This cross produced a fertile triploid F1 hybrid that set hexaploid seeds. The identity of the female progenitor is unknown, but various cultivated tetraploid Triticum wheats exist today. Genetic and archaeological evidence suggests that durum wheat (T. turgidum ssp. durum) may be the female progenitor. In previous studies, however, F1 hybrids of durum wheat crossed with Ae. tauschii consistently had low levels of fertility. To establish an empirical basis for the theory of durum wheat being the female progenitor of bread wheat, we crossed a durum wheat cultivar that carries a gene for meiotic restitution with a line of Ae. tauschii. F1 hybrids were produced without using embryo rescue techniques. These triploid F1 hybrids were highly fertile and spontaneously set hexaploid F2 seeds at the average selfed seedset rate of 51.5%. To the best of our knowledge, this is the first example of the production of highly fertile F1 hybrids between durum wheat and Ae. tauschii. The F1 and F2 hybrids are both similar morphologically to bread wheat and have vigorous growth habits. Cytological analyses of F1 male gametogenesis showed that meiotic restitution is responsible for the high fertility of the triploid F1 hybrids. The implications of these findings for the origin of bread wheat are discussed.  相似文献   

9.
Breeding for resistance to Fusarium head blight (FHB) in durum wheat continues to be hindered by the lack of effective resistance sources. Only limited information is available on resistance QTL for FHB in tetraploid wheat. In this study, resistance to FHB of a Triticum dicoccum line in the background of three Austrian T. durum cultivars was genetically characterized. Three populations of BC1F4-derived RILs were developed from crosses between the resistant donor line T. dicoccum-161 and the Austrian T. durum recipient varieties DS-131621, Floradur and Helidur. About 130 BC1F4-derived lines per population were evaluated for FHB response using artificial spray inoculation in four field experiments during two seasons. Lines were genetically fingerprinted using SSR and AFLP markers. Genomic regions on chromosomes 3B, 4B, 6A, 6B and 7B were significantly associated with FHB severity. FHB resistance QTL on 6B and 7B were identified in two populations and a resistance QTL on 4B appeared in three populations. The alleles that enhanced FHB resistance were derived from the T. dicoccum parent, except for the QTL on chromosome 3B. All QTL except the QTL on 6A mapped to genomic regions where QTL for FHB have previously been reported in hexaploid wheat. QTL on 3B and 6B coincided with Fhb1 and Fhb2, respectively. This implies that tetraploid and hexaploid wheat share common genomic regions associated with FHB resistance. QTL for FHB resistance on 4B co-located with a major QTL for plant height and mapped at the position of the Rht-B1 gene, while QTL on 7B overlapped with QTL for flowering time.  相似文献   

10.
Phytoene synthase-1 (Psy-1) homoeologs are associated with yellow pigment content (YPC) in endosperm of durum and bread wheat. In the present study, microsatellite variation in promoter region of Psy-A1 was identified in durum wheat and marker Psy-1SSR, targeting the microsatellite variation was developed which amplifies variation in Psy-A1 and Psy-B1 loci simultaneously. Psy-A1SSR was mapped within QYp.macs-7A, a major QTL for YPC identified earlier in PDW 233/Bhalegaon 4 population. Marker Psy-A1SSR was further validated in two different RIL populations and a set of 222 tetraploid wheat accessions including less cultivated tetraploid wheat species. Eight alleles of Psy-A1SSR were identified in 222 wheat accessions, while seven alleles were observed for Psy-B1SSR. Variation at Psy-A1SSR showed significant association with YPC, whereas no association was observed with Psy-B1SSR. Marker-assisted introgression of Psy-A1SSRe allele from PDW 233, to durum wheat cultivars MACS 3125 and HI 8498 resulted in improvement of YPC. Backcrossed BC3F2:4 and BC2F2:3 lines selected using Psy-A1SSR showed 89 to 98% gain in YPC over recurrent parents indicating robustness of marker. The marker can thus be utilized in marker-assisted improvement of YPC in durum wheat cultivars.  相似文献   

11.
An improved modification of genomic in situ hybridization (GISH) was proposed. It allows clear and reproducible discrimination between closely related genomes of both tetraploid and hexaploid wheat species due to preannealing of labeled DNA probes and prehybridization of chromosomal samples with blocking DNA. The method was applied to analyze intergenomic translocations 6A:6B and 1A:6B identified in the IG46147 and IG116188 samples of tetraploid wheat Triticum dicoccoides by C-banding. The structure of the rearranged chromosomes was defined for two translocation variants, and the breakpoints were identified on the chromosome arms. Possible application of the developed GISH variant to study genome reorganizations during speciation of allopolyploid plants in evolution is discussed.  相似文献   

12.

Key message

The major QTL for FHB resistance from hexaploid wheat line PI 277012 was successfully introgressed into durum wheat and minor FHB resistance QTL were detected in local durum wheat cultivars. A combination of these QTL will enhance FHB resistance of durum wheat.

Abstract

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of durum wheat. To combat the disease, great efforts have been devoted to introgress FHB resistance from its related tetraploid and hexaploid wheat species into adapted durum cultivars. However, most of the quantitative trait loci (QTL) for FHB resistance existing in the introgression lines are not well characterized or validated. In this study, we aimed to identify and map FHB resistance QTL in a population consisting of 205 recombinant inbred lines from the cross between Joppa (a durum wheat cultivar) and 10Ae564 (a durum wheat introgression line with FHB resistance derived from the hexaploid wheat line PI 277012). One QTL (Qfhb.ndwp-2A) from Joppa and two QTL (Qfhb.ndwp-5A and Qfhb.ndwp-7A) from 10Ae564 were identified through phenotyping of the mapping population for FHB severity and DON content in greenhouse and field and genotyping with 90K wheat Infinium iSelect SNP arrays. Qfhb.ndwp-2A explained 14, 15, and 9% of the phenotypic variation, respectively, for FHB severity in two greenhouse experiments and for mean DON content across the two greenhouse environments. Qfhb.ndwp-5A explained 19, 10, and 7% of phenotypic variation, respectively, for FHB severity in one greenhouse experiment, mean FHB severity across two field experiments, and mean DON content across the two greenhouse experiments. Qfhb.ndwp-7A was only detected for FHB severity in the two greenhouse experiments, explaining 9 and 11% of the phenotypic variation, respectively. This study confirms the existence of minor QTL in North Dakota durum cultivars and the successful transfer of the major QTL from PI 277012 into durum wheat.
  相似文献   

13.
Variation in photoperiod response plays an important role in adapting crops to agricultural environments. In hexaploid wheat, mutations conferring photoperiod insensitivity (flowering after a similar time in short or long days) have been mapped on the 2B (Ppd-B1) and 2D (Ppd-D1) chromosomes in colinear positions to the 2H Ppd-H1 gene of barley. No A genome mutation is known. On the D genome, photoperiod insensitivity is likely to be caused by deletion of a regulatory region that causes misexpression of a member of the pseudo-response regulator (PRR) gene family and activation of the photoperiod pathway irrespective of day length. Photoperiod insensitivity in tetraploid (durum) wheat is less characterized. We compared pairs of near-isogenic lines that differ in photoperiod response and showed that photoperiod insensitivity is associated with two independent deletions of the A genome PRR gene that cause altered expression. This is associated with induction of the floral regulator FT. The A genome deletions and the previously described D genome deletion of hexaploid wheat remove a common region, suggesting a shared mechanism for photoperiod insensitivity. The identification of the A genome mutations will allow characterization of durum wheat germplasm and the construction of genotypes with novel combinations of photoperiod insensitive alleles.  相似文献   

14.
Summary The present study describes a cytological stable alien chromosome translocation in tetraploid durum wheat. By crossing the hexaploid 1BL/1RS wheat-rye translocation line Veery to the tetraploid durum wheat cultivar Cando it was possible to select a 28 chromosomic strain homozygous for the 1BL/1RS translocation. The disease resistance potential of the short arm of rye chromosome 1R, which has been widely introduced in many hexaploid bread wheat cultivars could be now also used for the improvement of durum wheat.  相似文献   

15.
Grain protein concentration (GPC) is one of the most important factors influencing pasta-making quality. Durum wheat (Triticum turgidum L. var durum) cultivars with high GPC produce pasta with increased tolerance to overcooking and greater cooked firmness. However, the large environmental effect on expression of GPC and the negative correlation with grain yield have slowed genetic improvement of this important trait. Understanding the genetics and identification of molecular markers associated with high GPC would aid durum wheat breeders in trait selection at earlier generations. The objectives of this study were to identify and validate molecular markers associated with quantitative trait loci (QTL) for elevated GPC in durum wheat. A genetic map was constructed using SSR and DArT® markers in an F1-derived doubled haploid (DH) population derived from the cross DT695 × Strongfield. The GPC data were collected from replicated trials grown in six Canadian environments from 2002 to 2005. QTL associated with variation for GPC were identified on the group 1, 2, and 7 chromosomes and on 5B and 6B, but only QGpc.usw-B3 on 2B and QGpc.usw-A3 on 7A were expressed consistently in four and six environments, respectively. Positive alleles for GPC at these loci were contributed by the high-GPC parent Strongfield. The QGpc.usw-A3 QTL was validated in a second DH population, and depending on environment, selection for the Strongfield allele at barc108 resulted in +0.4% to +1.0% increase in GPC, with little effect on yield in most environments. Given the consistent expression pattern in multiple populations and environments, barc108 could be useful for marker-assisted selection for high GPC.  相似文献   

16.
Introgression of genetic material from wheat wild relatives into the common wheat genome remains important. This is a natural and inexhaustible source of enrichment of the wheat gene pool with genes that improve wheat’s adaptive potential. Hexaploid lines F4–F5 of wheat type were developed via hybridization of common wheat Aurora (AABBDD) and genome-substituted amphidiploid Aurotica (AABBTT). The hexaploid genome of the latter includes the diploid genome TT from wheat relative Aegilops mutica instead of subgenome DD of common wheat. F1–F3 hybrids had limited self-fertility, which had substantially increased for some derivatives in F4–F5. For all generations, development of the lines was accompanied by cytogenetic control of the chromosome numbers. The chromosome numbers varied in general from 33 to 46 depending upon generation. In most descendants, that number was 42 chromosomes in F4 when plants with chromosome numbers 40–44 were selected in each generation. F5 lines originate from nine selffertile F2 plants, differ from Aurora according to some morphological characters, and have alien DNA in their genome as was demonstrated by DNA dot-blot hybridization with genomic DNA of Aegilops mutica as a probe.  相似文献   

17.

Key message

The QTL Fhb1 was successfully introgressed and validated in three durum wheat populations. The novel germplasm and the QTL detected will support improvement of Fusarium resistance in durum wheat.

Abstract

Durum wheat (Triticum durum Desf.) is particularly susceptible to Fusarium head blight (FHB) and breeding for resistance is hampered by limited genetic variation within this species. To date, resistant sources are mainly available in a few wild relative tetraploid wheat accessions. In this study, the effect of the well-known hexaploid wheat (Triticum aestivum L.) quantitative trait locus (QTL) Fhb1 was assessed for the first time in durum wheat. Three F7-RIL mapping populations of about 100 lines were developed from crosses between the durum wheat experimental line DBC-480, which carries an Fhb1 introgression from Sumai-3, and the European T. durum cultivars Karur, Durobonus and SZD1029K. The RILs were evaluated in field experiments for FHB resistance in three seasons using spray inoculation and genotyped with SSR as well as genotyping-by-sequencing markers. QTL associated with FHB resistance were identified on chromosome arms 2BL, 3BS, 4AL, 4BS, 5AL and 6AS at which the resistant parent DBC-480 contributed the positive alleles. The QTL on 3BS was detected in all three populations centered at the Fhb1 interval. The Rht-B1 locus governing plant height was found to have a strong effect in modulating FHB severity in all populations. The negative effect of the semi-dwarf allele Rht-B1b on FHB resistance was compensated by combining with Fhb1 and additional resistance QTL. The successful deployment of Fhb1 in T. durum was further substantiated by assessing type 2 resistance in one population. The efficient introgression of Fhb1 represents a significant step forward for enhancing FHB resistance in durum wheat.
  相似文献   

18.
Aegilops speltoides is an important genetic resource for wheat improvement and has high levels of heat tolerance. A heat-tolerant accession of Ae. speltoides pau3809 was crossed with Triticum durum cv. PDW274, and BC2F4-6 backcross introgression lines (BILs) were developed, phenotyped for important physiological traits, genotyped using SSR markers and used for mapping the QTL governing heat tolerance component traits. A set of 90 BILs was selected from preliminary evaluation of a broader set of 262 BILs under heat stress. Phenotyping was conducted for physiological traits such as cell membrane thermostability, chlorophyll content, acquired thermotolerance, canopy temperature and stay green. Much variation for these traits was observed in random as well as selected sets of BILs, and comparison of the BILs with the recurrent parent showed improvement for these traits under normal as well as heat stress conditions, indicating that introgressions from Ae. speltoides might have led to the improvement in the heat tolerance potential of the BILs. Introgression profiling of the 90 BILs using SSR markers identified Ae. speltoides introgression on all the 14 chromosomes with introgressions observed on A as well as B genome chromosomes. QTL mapping identified loci for various heat tolerance component traits on chromosomes 2B, 3A, 3B, 5A, 5B and 7A at significant LOD scores and with phenotypic contributions varying from 11.1 to 28.7 % for different traits. The heat-tolerant BILs and QTL reported in the present study form a potential resource that can be used for wheat germplasm enhancement for heat stress tolerance.  相似文献   

19.
Islam N  Tsujimoto H  Hirano H 《Proteomics》2003,3(4):549-557
Hexaploid wheat (Triticum aestivum L.) is derived from a complex hybridization procedure involving three diploid species carrying the A, B and D genomes. The proteome patterns of diploid, tetraploid and hexaploid wheat were analyzed to explore the genome interaction in protein expression. At least two species from each of the diploid and tetraploid were used to compare their proteome maps with a hexaploid wheat cv. Chinese Spring. The ancestral cultivars were selected based on their history of closeness with the cultivated wheat. Proteins were extracted from seed flour and separated by two-dimensional electrophoresis (2-DE) with isoelectric focusing of pH range from 4-10. 2-DE maps of cultivated and ancestral species were analyzed by computer assisted image analyzer. The region of high molecular weight glutenin subunits of hexaploid wheat showed similarity with those of the diploid donors, BB and DD genomes. The omega gliadin, which is controlled by B genome in common wheat, was assumed to have evolved as a result of interaction between AA and BB genomes. The low molecular weight glutenins and alpha and beta gliadin regions were contributed by the three genomes. This result suggests that the function of donor genomes particularly in the expression of proteins in hexaploid wheat is not totally independent; rather it is the product of interactions among the diploid genomes in the hexaploid nuclear constitutions. The expression of nonstorage proteins was affected substantially due to the removal of the D genome from hexaploid constitution. Location of the structural gene controlling one of the alpha amylase inhibitor proteins in the nonstorage protein region was identified in the short arm of chromosome 3D.  相似文献   

20.
Race 5 of Pyrenophora tritici-repentis, causal agent of tan spot, induces two distinct symptoms, necrosis and chlorosis in susceptible tetraploid and hexaploid wheat, respectively. This study was conducted under controlled environmental conditions to determine the inheritance of resistance to P. tritici-repentis, race 5, in a tetraploid wheat population and to map the resistance genes. Additionally, the relationship between the resistance genes effective against necrosis inducing races 3 and 5 in tetraploid wheat was determined. A population of 98 recombinant-inbred lines (RIL) was developed from a cross between the resistant genotype Triticum turgidum # 283 (PI352519) and the susceptible durum cultivar Coulter. This RIL population was screened individually with race 3 and race 5 and molecular mapping of the resistance gene(s) in this population was conducted. Additionally, the F2 and F4:5 generations of this population were screened with race 5 to determine the genetic control of resistance. Plants were inoculated at the two-leaf stage and disease reaction was assessed based on 1 to 5 lesion-type rating scale eight days after inoculation. Segregation analysis of the F2 generation and of the F4:5 and F6:7 families indicated that a single recessive gene controlled resistance to necrosis induced by race 5. Analysis of the mapping data of the T. turgidum # 283/Coulter RIL population indicate that a major gene, designated tsn5, controlling resistance to race 5 is located on the long arm of chromosome 3B. The tsn5 gene is 8.3 cM proximal to the gene tsn2 that controls resistance to necrosis induced by race 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号