首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Single base substitutions in DNA mismatch repair genes which are predicted to lead either to missense or silent mutations, or to intronic variants outside the highly conserved splicing region are often found in hereditary nonpolyposis colorectal cancer (HNPCC) families. In order to use the variants for predictive testing in persons at risk, their pathogenicity has to be evaluated. There is growing evidence that some substitutions have a detrimental influence on splicing. We examined 19 unclassified variants (UVs) detected in MSH2 or MLH1 genes in patients suspected of HNPCC for expression at RNA level. We demonstrate that 10 of the 19 UVs analyzed affect splicing. For example, the substitution MLH1,c.2103G>C in the last position of exon 18 does not result in a missense mutation as theoretically predicted (p.Gln701His), but leads to a complete loss of exon 18. The substitution MLH1,c.1038G>C (predicted effect p.Gln346His) leads to complete inactivation of the mutant allele by skipping of exons 10 and 11, and by activation of a cryptic intronic splice site. Similarly, the intronic variant MLH1,c.306+2dupT results in loss of exon 3 and a frameshift mutation due to a new splice donor site 5 bp upstream. Furthermore, we confirmed complete exon skipping for the mutations MLH1,c.1731G>A and MLH1,c.677G>A. Partial exon skipping was demonstrated for the mutations MSH2,c.1275A>G, MLH1,c.588+5G>A, MLH1,c.790+4A>G and MLH1,c.1984A>C. In contrast, five missense mutations (MSH2,c.4G>A, MSH2,c.2123T>A, MLH1,c.464T>G, MLH1,c.875T>C and MLH1,c.2210A>T) were found in similar proportions in the mRNA as in the genomic DNA. We conclude that the mRNA examination should precede functional tests at protein level. Databases: HNPCC – OMIM 114500, MSH2 – OMIM: 120435; GenBank: NM_000251.1, MLH1 – OMIM: 120436; GenBank: NM_000249.2, InSiGHT mutation database: , Programs: BDGP: , ESEfinder program:  相似文献   

4.
Melanocortin-4 receptor (MC4R) is one of five G-protein-coupled receptors binding melanocortins that is implicated in the control of feeding behavior and energy homeostasis. Six cattle populations (= 594), including four Chinese indigenous breeds, Chinese Holstein, and a meat type breed (Angus), were used to detect single nucleotide polymorphisms in 5′-untranslated region of MC4R gene by means of PCR–SSCP and DNA sequencing. Four linked SNPs (g.[−293C>G; −193A>T; −192T>G; −129A>G]) were identified. The g.−293C>G and g.−129A>G could be genotyped with a PCR–RFLP using TaiI in three combined genotypes (AA, AB and BB). The two linked SNPs were associated with body weight and daily gain in Nanyang aged 6 months (< 0.05), but they had no significant effect on body weight and daily gain in Nanyang aged 24 months (> 0.05).  相似文献   

5.
6.
Inherited mutation of a purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT), gives rise to Lesch-Nyhan Syndrome (LNS) or HPRT-related gout. Here, we report five novel independent mutations in the coding region of the HPRT gene from five unrelated male patients manifesting different clinical phenotypes associated with LNS: exon 2: c.133A > G, p.45R > G; c.35A > C, p.12D > A; c.88delG; exon 7: c.530A > T, p.177D > V; and c.318 + 1G > C: IVS3 + 1G > C splice site mutation.  相似文献   

7.
8.
Genetic deficiency of the glycogen-debranching enzyme (debrancher) causes glycogen storage disease type III (GSD III), which is divided into two subtypes: IIIa and IIIb. In GSD IIIb, glycogen accumulates only in the liver, whereas both liver and muscles are involved in GSD IIIa. The molecular basis for the differences between the two subtypes has not been fully elucidated. Recently, mutations in exon 3 of the debrancher gene were reported to be specifically associated with GSD IIIb. However, we describe a homozygous GSD IIIb patient without mutations in exon 3. Analysis of the patient’s debrancher cDNA revealed an 11-bp insertion in the normal sequence. An A to G transition at position –12 upstream of the 3′ splice site of intron 32 (IVS 32 A–12→G) was identified in the patient’s debrancher gene. No mutations were found in exon 3. Mutational analysis of the family showed the patient to be homozygous for this novel mutation as well as three polymorphic markers. Furthermore, the mother was heterozygous and the parents were first cousins. The acceptor splice site mutation created a new 3′ splice site and resulted in insertion of an 11-bp intron sequence between exon 32 and exon 33 in the patient’s debrancher mRNA. The predicted mutant enzyme was truncated by 112 amino acids as a result of premature termination. These findings suggested that a novel IVS 32 A–12→G mutation caused GSD IIIb in this patient. Received: 1 August 1997 / Accepted: 22 September 1997  相似文献   

9.
10.
Characterization of exon skipping mutants of the COP1 gene from Arabidopsis   总被引:4,自引:1,他引:3  
The removal of introns from pre-mRNA requires accurate recognition and selection of the intron splice sites. Mutations which alter splice site selection and which lead to skipping of specific exons are indicative of intron/exon recognition mechanisms involving an exon definition process. In this paper, three independent mutants to the COP1 gene in Arabidopsis which show exon skipping were identified and the mutations which alter the normal splicing pattern were characterized. The mutation in cop1–1 was a G→A change 4 nt upstream from the 3′ splice site of intron 5, while the mutation in cop1–2 was a G→A at the first nucleotide of intron 6, abolishing the conserved G within the 5′ splice site consensus. The effect of these mutations was skipping of exon 6. The mutation in cop1–8 was G→A in the final nucleotide of intron 10 abolishing the conserved G within the 3′ splice site consensus and leading to skipping of exon 11. The splicing patterns surrounding exons 6 and 11 of COP1 in these three mutant lines of Arabidopsis provide evidence for exon definition mechanisms operating in plant splicing.  相似文献   

11.
Coffin–Lowry syndrome (CLS) is caused by mutations in the RSK2 gene encoding a protein kinase of the Ras signalling pathway. We have studied two point mutations which cause aberrant splicing but do not concern the invariant GT or AG nucleotides of splice sites. The first, an A→G transition at position +3 of the 5′ splice site of exon 6, results in vivo and in vitro in exon skipping and premature translation termination. The natural 5′ splice site, although intrinsically weak, is not transactivated under normal conditions. Consequently, replacement of an A/U by a G/U base pairing with U1 snRNA reduces its strength below a critical threshold. The second mutation, an A→G transition 11 nt upstream of exon 5, creates a new AG near the natural 3′ splice site. In vitro this synthetic 3′ AG is used exclusively by the splicing machinery. In vivo this splicing event is also observed, but is underestimated because the resulting RSK2 mRNA contains premature stop codons which trigger the nonsense-mediated decay process. We show that a particular mechanism is involved in the aberrant splicing of exon 5, implying involvement of the natural 3′ AG during the first catalytic step and the new 3′ AG during the second step. Thus, our results explain how these mutations cause severe forms of CLS.  相似文献   

12.
13.
14.
We performed a limited DNA sequence analysis of the CARD15 gene in 89 patients with Crohn’s disease (CD), 19 patients with ulcerative colitis (UC), and three patients with indeterminate colitis (IC), who were heterozygous carriers of one of the common CARD15 mutations [c.2104C>T (p.R702W), c.2722G>C (p.G908R), or c.3019_3020insC (p.Leu1007fsX1008)], the c.2462+10A>C variant, or of a new amino acid substitution in the 3′-end of exon 4. CARD15 exons 4, 5, 6, 8, and 11 were amplified by PCR and completely sequenced, thereby theoretically covering 73.9% of the described CARD15 variants and 96.6% of the mutated alleles. Using this approach, eight novel amino acid substitutions [c.1171C>T (p.R391C), c.1387C>G (p.P463A), c.2138G>A (p.R713H), c.2278C>T (p.R760C), c.2368C>T (p.R790W), c.2371C>T (p.R791W), c.2475C>G (p.N825K), and c.2546C>T (p.A849V)] were detected in six CD and two IC patients, and one UC patient. A severe disease phenotype was observed especially in patients who are compound-heterozygous for a common and a novel CARD15 mutation.Schnitzler and Brand contributed equally  相似文献   

15.
Identical G+1 mutations in three different introns of the gene for type III procollagen (COL3A1) that cause aberrant splicing of RNA were found in three probands with life-threatening variants of Ehlers-Danlos syndrome. Because the three mutations were in a gene with multiple and homologous exons, they provided an interesting test for factors that influence aberrant splicing. The G+1 to A mutation in intron 16 caused extensive exon skipping, the G+1 to A mutation in intron 20 caused both use of a cryptic splice site and retention of all the intron sequences, and the G+1 to A mutation in intron 42 caused efficient use of a single cryptic splice site. The different patterns of RNA splicing were not explained by evaluation of potential cryptic splice sites in the introns by either their homology with 5'-splice sites from other genes or by their delta G(0)37 values for binding to U1 RNA. Instead, the results suggested that the patterns of aberrant RNA splicing were primarily determined by the relative rates at which adjacent introns were normally spliced.  相似文献   

16.
17.
18.
Serine/arginine-rich (SR) protein and its homologues (SR-related proteins) are important regulators of constitutive and/or alternative splicing and other aspects of mRNA metabolism. To clarify the contribution of a plant-specific and stress-responsive SR-related protein, atSR45a, to splicing events, here we analyzed the interaction of atSR45a with the other splicing factors by conducting a yeast two-hybrid assay and a bimolecular fluorescence complementation analysis. The atSR45a-1a and -2 proteins, the presumed mature forms produced by alternative splicing of atSR45a, interacted with U1-70K and U2AF35b, splicing factors for the initial definition of 5′ and 3′ splice sites, respectively, in the early stage of spliceosome assembly. Both proteins also interacted with themselves, other SR proteins (atSR45 and atSCL28), and PRP38-like protein, a homologue of the splicing factor essential for cleavage of the 5′ splice site. The mapping of deletion mutants of atSR45a proteins revealed that the C-terminal arginine/serine-rich (RS) domain of atSR45a proteins are required for the interaction with U1-70K, U2AF35b, atSR45, atSCL28, PRP38-like protein, and themselves, and the N-terminal RS domain enhances the interaction efficiency. Interestingly, the distinctive N-terminal extension in atSR45a-1a protein, but not atSR45a-2 protein, inhibited the interaction with these splicing factors. These findings suggest that the atSR45a proteins help to form the bridge between 5′ and 3′ splice sites in the spliceosome assembly and the efficiency of spliceosome formation is affected by the expression ratio of atSR45a-1a and atSR45a-2.  相似文献   

19.
The ovomucoid pre-mRNA has been folded into mini-hairpins adaptable for the RNA recognition motif (RRM) protein binding. The number of mini-hairpins were 372 for pre-mRNA and 83-86 for mature m RNA The spatial arrangements are, in average, 16 nucleotides per mini-hairpin which includes 7 nt in the stem, 5.6 nt in the loop and 3.7 nt in the inter-hairpin spacer. The constitutive splicing system of ovomucoid-pre-mRNA is characterized by preferred order of intron removal of 5/6 > 7/4 > 2/1 > 3. The 5′ splice sites (5′SS), branch point sequences (BPS) and 3′ splice sites (3′SS) were identified and free energies involved have been estimated in 7 splice sites. Thermodynamic barriers for splice sites from the least (| lowest | -Kcal) were 5,4, 7,6, 2,1, and 3; i.e., −18.7 Kcal, −20.2 Kcal, −21.0 Kcal, −24.0 Kcal, −25.4 Kcal, −26.4 Kcal and −28.2 Kcal respectively. These are parallel to the kinetic data of splicing order reported in the literature. As a result, the preferred order of intron removals can be described by a consideration of free energy changes involved in the spliceosomal assembly pathway. This finding is consistent with the validity of hnRNP formation mechanisms in previous reports.  相似文献   

20.
He X  Lu Y  Saha N  Yang H  Heng CK 《Human genetics》2005,118(3-4):393-403
Acyl-CoA: cholesterol acyltransferase-2 (ACAT2), an intracellular cholesterol esterification enzyme found only in the intestine and liver, has been demonstrated to be associated with hypercholesterolemia and atherosclerosis in mice. To explore the possible impact of ACAT2 gene variants on CAD susceptibility and plasma lipid levels, three polymorphisms, 41A>G (Glu>Gly), 734C>T (Thr>Ile), and IVS4-57_58 ins48 bp (D/I), were genotyped in 809 CAD patients (CAD+) and 1,304 controls (CAD−) from three distinct Singaporean ethnic groups (1,228 Chinese, 367 Malays and 518 Indians). The 734T allele frequency was significantly lower in CAD+ (0.20) than CAD− (0.26) in Chinese (P=0.003) and I allele of D/I was significantly higher in CAD+ (0.17) than CAD− (0.10) in Indians (P=0.011). The 41G allele was significantly more frequent among normolipidemic (0.19) than dyslipidemic (0.13) individuals in Chinese (P=0.008). In normolipidemic females, 734C>T was associated with apoA1, apoB and lipoprotein (a) in Indians, and with apoA1 in Malays, whereas 41A>G is associated with total cholesterol in Indians. The 734C>T polymorphism was in almost complete linkage disequilibrium (LD) with the IVS4-57_58 ins48 bp and in very strong LD with 41A>G in all the three ethnic groups. In the normolipidemic females, the AG/CT had much higher apoB than AA/CC in Indians. We found that the three ACAT2 polymorphisms studied are associated with CAD risk and plasma lipid levels but their effects are not consistent across genders and ethnic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号