首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phospholipase activities of the P388D1 macrophage-like cell line   总被引:3,自引:0,他引:3  
The murine macrophage (M phi) cell line, P388D1, was employed as a source of M phi phospholipases in order to characterize the enzymatic properties and subcellular localization of these enzymes because of their importance for prostaglandin biosynthesis. Phospholipase activity was assessed with dipalmitoylphosphatidylcholine (DPPC) as substrate. Phospholipases were characterized with respect to divalent cation dependence, pH optima, and localization in subcellular compartments using linear sucrose gradients. By these criteria a number of different phospholipases were identified. Most importantly, a single Ca2+-dependent activity with a pH optimum of 8.8 was identified in membrane-rich fractions (plasma membrane, mitochondria, and endoplasmic reticulum) and could be clearly separated from the remaining activities, which are Ca2+ independent and exhibit pH optima of 7.5, 5.1, and 4.2. The phospholipases with acidic pH optima may be associated with subcellular components containing lysosomal enzymes and both phospholipase A1 and phospholipase A2 activities are observed. In contrast, the phospholipase activity with a pH optimum of 7.5 sediments with the cytosolic proteins and is inhibited by 5 mM Ca2+. No significant phospholipase C activity was detected in assays performed with or without added Ca2+ at pH's 4.2, 5.1, 7.5, or 8.8 using DPPC as substrate. However, the P388D1 cells do contain a lysophospholipase that is at least 20 times more active than the phospholipase A activities identified. Its presence must be taken into account in evaluating the positional specificities and properties of the macrophage phospholipases.  相似文献   

2.
Monoclonal antibodies against rat liver mitochondrial phospholipase A2 were used to develop a rapid immunoaffinity chromatography for enzyme purification. The purified enzyme showed a single band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The sequence of the N-terminal 24 amino acids was determined. This part of the sequence showed only 25% homology with that of rat pancreatic phospholipase A2 but was 96% identical to that of rat platelet and rat spleen membrane-associated phospholipase A2. These enzymes are distinguished from pancreatic phospholipases A2 by the absence of Cys-11. In rat liver phospholipase A2 activity has been reported in various subcellular fractions. All of these require Ca2+ and have a pH optimum in the alkaline region, but little is known about the structural relationship and quantitative distribution of these enzymes. We have investigated these points after solubilization of the phospholipase A2 activity from total homogenates and crude subcellular fractions by extraction with 1 M potassium chloride. Essentially all of the homogenate activity could be solubilized by this procedure indicating that the enzymes occurred in soluble or peripherally membrane-associated form. Gel filtration and immunological cross-reactivity studies indicated that phospholipases A2 solubilized from membrane fractions shared a common epitope with the mitochondrial enzyme. The quantitative distribution of the immunopurified enzyme activity among subcellular fractions followed closely that of the mitochondrial marker cytochrome c oxidase. Rat liver cytosol contained additional Ca2+-dependent and -independent phospholipase activities.  相似文献   

3.
In mammalian cells the catabolism of membrane phosphoglycerides proceeds probably entirely through a deacylation pathway catalysed by phospholipase A and lysophospholipase (Wise & Elwyn, 1965). In the initial attack of diacylphosphoglycerides by phospholipase A two enzymatic activities with different positional specificities have been distinguished: phospholipase A1 (phosphatidate 1-acyl hydrolase EN 3.1.1.32) and phospholipase A2 (phosphatidate 2-acyl hydrolase EN 3.1.1.4) (Van Deenen & De Haas, 1966). Studies on these intracellular phospholipases were mainly concerned with their subcellular localization. Only occasionally more detailed enzymatic investigations have been conducted on them, in contrast to export phospholipases e.g. from snake venom, bee venom and porcine pancreas, which have been extensively investigated (Brockerhoff & Jensen 1974a). In a previous paper (De Wolf et al., 1976a), the presence of phospholipase A1 and phospholipase A2 activities in bovine thyroid was demonstrated, using 1-[9, 10-3H] stearoyl-2-[1-14C] linoleyl-sn-glycero-3-phosphocholine as a substrate. Optimal activity was observed in both instances at pH 4. Addition of the anionic detergent sodium taurocholate increased the A2 type activity and decreased the A1 type activity suggesting the presence of different enzymes. The lack of influence of Ca2+-ions and EDTA and the acid pH optima could suggest lysosomal localization. In this paper the subcellular distribution of both acid phospholipase activities is described as well as a purification scheme for phospholipase A1. Some characteristics of the purified enzyme preparation are discussed.  相似文献   

4.
The partial characterization of a calcium-dependent phospholipase A2 associated with membranes of mouse sperm is described. Intact and sonicated sperm had comparable phospholipase A2 activity which was maximal at pH 8.0 using [1-14C]oleate-labeled autoclaved Escherichia coli or 1-[1-14C]stearoyl-2-acyl-3-sn-glycerophosphorylethanolamine as substrates. More than 90% of the activity was sedimented when the sperm sonicate was centrifuged at 100 000 X g, indicating that the enzyme is almost totally membrane-associated. The activity is stimulated 200% during the ionophore-induced acrosome reaction and is almost equally distributed between plasma/outer acrosomal and inner acrosomal membrane fractions. The membrane-associated phospholipase A2 had an absolute requirement for low concentrations of Ca2+; Sr2+, Mg2+ and other divalent and monovalent cations would not substitute for Ca2+. In the presence of optimal Ca2+, zinc and gold ions inhibited the activity while Cu2+ and Cd2+ were without effect. Incubation of sperm sonicates with 1-[1-14C]stearoyl-2-acyl-3-sn-glycerophosphorylethanolamine in the presence and absence of sodium deoxycholate demonstrated the presence of phospholipase A2 and lysophospholipase activities. No phospholipase A1 activity was detectable. Indomethacin, sodium meclofenamate and mepacrine, but not dexamethasone or aspirin, inhibited the sperm phospholipase A2 activity. Preincubation with p-bromophenacyl bromide inhibited phospholipase A2, suggesting the presence of histidine at the active site. The enzyme may play an important role in the membrane fusion events in fertilization.  相似文献   

5.
Phospholipid-deacylating enzymes of rat stomach mucosa   总被引:3,自引:0,他引:3  
1. Rat stomach mucosa exhibited three distinguishable phospholipid-deacylating enzyme activities: lysophospholipase, phospholipase A1 and phospholipase A2. 2. The lysophospholipase hydrolyzed 1-palmitoyl lysophosphatidylcholine to free fatty acid and glycerophosphorylcholine. This enzyme had an optimum pH of 8.0, was heat labile, did not require Ca2+ for maximum activity and was not inhibited by bile salts or buffers of high ionic strength. 3. Phospholipase A2 and phospholipase A1 deacylated dipalmitoyl phophatidylcholine to the corresponding lyso compound and free fatty acid. The specific activity of phospholipase A2 was 2--4-fold higher than that of phospholipase A1 under all the conditions tested. Both activities were enhanced 4--7.5-fold in the presence of bile salts at alkaline pH and 11-18-fold at acidic pH. 4. In the absence of bile salts, phospholipase A1 exhibited pH optima at 6.5 and 9.5 and phospholipase A2 at pH 6.5, 8.0 and 9.5. The pH optima for phospholipase A1 were shifted to pH 3.0, 6.0 and 9.0 in presence of sodium taurocholate; the activity was detected only at a single pH of 9.5 in the presence of sodium deoxycholate and at pH 10.0 in the presence of sodium glycocholate. Phospholipase A2 optimum activity was displayed at pH 3.0, 6.0 and 8.0 in presence of taurocholage, pH 7.5 and 9.0, in presence of glycocholate and only at pH 9.0 in presence of deoxycholate. 5. Ca2+ was essential for optimum activity of phospholipases A1 and A2. But phospholipase A1 lost complete activity in presence of 0.5 mM ethyleneglycolbis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) at pH 6.0, whereas phospholipase A2 lost only 50%. 6. Phospholipases A1 and A2 retained about 50% of their activities by heating at 75 degrees for 10 min. At 100 degrees, phospholipase A1 retained 22% of its activity, whereas phospholipase A2 retained only 7%.  相似文献   

6.
Calcium-independent phospholipase A2 in rat tissue cytosols   总被引:3,自引:0,他引:3  
Cytosols (105,000 X g supernatant) from seven rat tissues were assayed for Ca2+-independent phospholipase A2 activity with either 1-acyl-2-[1-14C]linoleoyl-sn-glycero-3-phosphocholine, 1-acyl-2-[1-14C]linoleoyl-sn-glycero-3-phosphoethanolamine or 1-O-hexadecyl-2-[9,10-3H2]oleoyl-sn-glycero-3-phosphocholine as substrate. Low but consistent activities ranging from 10-120 pmol/min per mg protein were found in all tissues. The highest activities were present in liver, lung and brain. Total activities in mU/g wet weight were rather constant, ranging from 0.43 (heart) to 1.36 (liver). The soluble enzyme from rat lung cytosol was further investigated and was found to be capable of hydrolyzing microsomal membrane-associated substrates without exhibiting much selectivity for phosphatidylcholine species. Comparative gel filtration experiments of cytosol prepared from non-perfused and perfused lungs indicated that part of the Ca2+-independent phospholipase A2 originated from blood cells, but most of it was derived from lung cells. Lung cytosol also contained Ca2+-dependent phospholipase A2 activity, a small part of which originated from blood cells, presumably platelets. The major amount of Ca2+-dependent phospholipase A2 activity, however, came from lung cells. Neither this enzyme nor the Ca2+-independent phospholipase A2 from lung tissue showed immunological cross-reactivity with monoclonal antibodies against Ca2+-dependent phospholipase A2 isolated from rat liver mitochondria.  相似文献   

7.
An enzyme with phospholipase Al activity was purified some 500-fold from Escherichia coli cell homogenates. Lipase, phospholipase A2, and lysophospholipase copurified with phospholipase A1 and the four activities displayed similar susceptibility to heat treatment. The phospholipase A and lipase activities were recovered in a single band when partially purified preparations were subjected to SDS gel electrophoresis. Phospholipase, lysophospholipase, and lipase all required Ca2+ for activity. Phosphatidylcholine, phosphatidylethanolamine, and their lyso analogues were all hydrolysed at equivalent rates and these were substantially greater than the rate of methylpalmitate or tripalmitoylglycerol hydrolyses under similar incubation conditions. Evidence for a direct but slow hydrolysis of the ester at position 2 of phosphoglyceride was obtained; however, release of fatty acid from this position is mostly indirect involving acyl migration to position 1 and subsequent release of the translocated fatty acid. Escherichia coli, therefore, appears to possess a lipolytic enzyme of broad substrate specificity acting mainly at position 1 but also at position 2 of phosphoglycerides and on triacylglycerols and methyl fatty-acid esters.  相似文献   

8.
1.1. Lysosome-enriched fractions were prepared by differential centrifugation of homogenates of luteinized rats ovaries. Acid phospholipase A activities were characterized with [U-14C]diacyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-[9,10-3H]- or [1-14C]oleoyl-sn-glycero-3-phosphocholine as substrates. Acid phospholipase A1 activity had properties similar to other hydrolases of lysosomal origin; subcellular distribution, latency and acidic pH optimum. Acid phospholipase A2 activity with similar characteristics was also tentatively identified. We were unable to exclude the possibility that the combined action of phospholipase A1 and lysophospholipase contributed to the release of acyl moieties from the 2-position of the synthetic substrates. 2. Lysophospholipase activity was present in the lysosome-enriched fractions. This activity had an alkaline pH optimum. 3. Phospholipase A1 and A2 activities solubilized from lysosome fractions by freeze-thawing were inhibited by Ca2+ and slightly activated by EDTA. A Ca2+- stimulated phospholipase A2 activity, with an alkaline pH optimum, remained in the particulate residue of freeze-thawed lysosome preparations. This activity is believed to represent mitochondrial contamination. 4. Activities of acid phospholipase A, as well as other acid hydrolases, increased approx. 1.5-fold between 1 and 4 days following induction of luteinizatin, suggesting a hormonal influence on lysosomal enzyme activities.  相似文献   

9.
Legionella pneumophila possesses a variety of secreted and cell-associated hydrolytic activities that could be involved in pathogenesis. The activities include phospholipase A, lysophospholipase A, glycerophospholipid:cholesterol acyltransferase, lipase, protease, phosphatase, RNase, and p-nitrophenylphosphorylcholine (p-NPPC) hydrolase. Up to now, there have been no data available on the regulation of the enzymes in L. pneumophila and no data at all concerning the regulation of bacterial phospholipases A. Therefore, we used L. pneumophila mutants in the genes coding for the global regulatory proteins RpoS and LetA to investigate the dependency of hydrolytic activities on a global regulatory network proposed to control important virulence traits in L. pneumophila. Our results show that both L. pneumophila rpoS and letA mutants exhibit on the one hand a dramatic reduction of secreted phospholipase A and glycerophospholipid:cholesterol acyltransferase activities, while on the other hand secreted lysophospholipase A and lipase activities were significantly increased during late logarithmic growth phase. The cell-associated phospholipase A, lysophospholipase A, and p-NPPC hydrolase activities, as well as the secreted protease, phosphatase, and p-NPPC hydrolase activities were significantly decreased in both of the mutant strains. Only cell-associated phosphatase activity was slightly increased. In contrast, RNase activity was not affected. The expression of plaC, coding for a secreted acyltransferase, phospholipase A, and lysophospholipase A, was found to be regulated by LetA and RpoS. In conclusion, our results show that RpoS and LetA affect phospholipase A, lysophospholipase A, acyltransferase, and other hydrolytic activities of L. pneumophila in a similar way, thereby corroborating the existence of the LetA/RpoS regulation cascade.  相似文献   

10.
Rat platelets released phospholipase A2 and lysophospholipase upon activation with thrombin or ADP. The release of phospholipases was energy-dependent and was not in parallel with that of a known lysosomal marker enzyme, N-acetyl-beta-D-glucosaminidase. The phospholipases are derived from other granules (dense granules or alpha-granules) rather than lysosomal granules of the cells. All of the activities of both phospholipases in the cell free fraction obtained from the activated platelet reaction mixture was recovered in the supernatant after centrifugation at 105,000 X g. The degree of hydrolysis of phospholipids by the phospholipase A2 followed the order: phosphatidylethanolamine (PE) greater than phosphatidylserine (PS) greater than phosphatidylcholine (PC). Phospholipase A2 shows a broad pH optimum (greater than pH 7.0) and absolutely requires Ca2+. Lysophospholipase was specific to lysophosphatidylserine (lysoPS), and neither lysophosphatidylethanolamine (lysoPE) nor lysophosphatidylcholine (lysoPC) was hydrolyzed appreciably. Both 1-acyl- and 2-acyl-lysophosphatidylserine were equally hydrolyzed. Lysophospholipase activity shows similar pH optimum to phospholipase A2. The lysophospholipase activity was lost easily at 60 degrees C. The activity was reduced by the presence of EDTA, though low but distinct activity was observed even in the presence of EDTA. Addition of Ca2+ to the mixtures restores the full activity.  相似文献   

11.
Phospholipid metabolism in the rat renal inner medulla   总被引:2,自引:0,他引:2  
In view of the importance of phospholipids as a source of precursor fatty acids for the high prostaglandin synthesis in the renal inner medulla, we studied pathways of phospholipid esterification and degradation in the rat inner medulla. De novo acylation of [14C]arachidonate occurred predominantly in position 2 of phosphatidylcholine in the microsomal fraction. This newly esterified [14C]arachidonate was accessible to deacylation by a microsomal phospholipase A2 (EC 3.1.1.4) with alkaline optimum which was Ca2+-dependent and resistant to 0.1% deoxycholate. No phospholipase A1 (EC 3.1.1.32) activity against endogenous labeled phosphatidylcholine could be demonstrated in the microsomal fraction. When exogenous phosphatidylcholine labeled at position 2 was deacylated by renomedullary homogenates, labeled free fatty acid but no labeled lysophosphatidylcholine was recovered in the reaction products. This could be attributed to further degradation of generated lysophosphatidylcholine by a cytosolic lysophospholipase (EC 3.1.1.5). Sodium deoxycholate at a concentration of 0.1% or higher inhibited the lysophospholipase and allowed the demonstration of both A2 and A1 alkaline phospholipase activities in the homogenate. The major in vitro pathway of lysophosphatidylcholine disposition is further degradation by a cytosolic lysophospholipase, while reutilization for phosphatidylcholine synthesis through the action of a predominantly microsomal acyltransferase appears to be a minor pathway. In the presence of several acyl-CoAs, reutilization of lysophosphatidylcholine is significantly increased by an acyl-CoA:lysophosphatidylcholine acyltransferase (EC 2.3.1.23) but there is no preferential transfer of arachidonyl-CoA compared to other acyl-CoAs.  相似文献   

12.
A comparative study was made of the metal ion requirement of rat liver mitochondrial phospholipase A2 in purified and membrane-associated forms. Membrane-bound enzyme was assayed using either exogenous or endogenous phosphatidylethanolamine. Although several divalent metal ions caused increased activity of the membrane-associated enzyme, only Ca2+ and Sr2+ activated the purified phospholipase A2. The activity in the presence of Sr2+ amounted to about 25% of that found with Ca2+. When the Ca2+ concentration was varied two activity plateaus were observed. The corresponding dissociation constants varied from 6 to 20 microM Ca2+ and from 1.4 to 12 mM Ca2+ for the high- and low-affinity binding sites, respectively, depending on the assay conditions and whether purified or membrane-bound enzyme was used. A kSr2+ of 60 microM was found for the high-affinity binding site. The effect of calmodulin and its antagonist trifluoperazine was also investigated using purified and membrane-associated enzyme. When membrane-bound enzyme was measured with exogenous phosphatidylethanolamine, small stimulations by calmodulin were found. However, these were not believed to indicate a specific role for calmodulin in the Ca2+ dependency of the phospholipase A2, since trifluoperazine did not lower the activity of the membrane-bound enzyme to levels below those found in the presence of Ca2+ alone. Membrane-bound enzyme in its action toward endogenous phosphatidylethanolamine was neither stimulated by calmodulin nor inhibited by trifluoperazine. Purified enzyme was also not stimulated by calmodulin, while trifluoperazine caused small stimulations, presumably due to interactions at the substrate level. These results indicate that calmodulin involvement in phospholipase A2 activation should not be generalized.  相似文献   

13.
Two lysophospholipases were isolated from the venom of an Australian elapid snake (subfamily Acanthophiinae), Pseudechis australis, by sequential chromatography on CM-52 cellulose, Sephadex G-75 and DE-52 cellulose columns. They were very similar to each other. One of them, lysophospholipase I, was obtained as a homodimer, the monomer of which consisted of 123 amino acid residues with seven disulphide bridges. The amino acid composition and the N-terminal amino acid sequence of the enzyme were similar to those of phospholipase A2, Ca2+ was required for its activity and the maximum activity was attained at 2 mM-CaCl2 in the presence of 1 mM-EDTA. The optimum pH was 7.5. Lysophospholipase I hydrolysed lysophosphatidylcholine more rapidly than lysophosphatidylethanolamine. It did not hydrolyse, however, phosphatidylcholine, 1-palmitoylglycerol, tripalmitoylglycerol or p-nitrophenyl acetate. Modification of the enzyme with p-bromophenacyl bromide or 2-nitrophenylsulphenyl chloride suppressed the activity. A strong direct haemolytic activity was exhibited when the lysophospholipase was present together with phospholipase A2.  相似文献   

14.
B M L?ffler  H Kunze 《FEBS letters》1987,216(1):51-56
Human liver was homogenised and fractionated by differential centrifugation, and the subcellular fractions were characterised biochemically. Absolute values and distribution patterns of protein and marker enzyme activities obtained from human liver have also been compared with those from rat liver. In addition, acid phospholipase activities have been studied in human liver. On the basis of product formation from stereo-specifically radiolabeled phosphatidylethanolamine substrates, lysosomal phospholipases A1 and A2 with optimal activities at pH 4.7 have been identified in human liver. Acid phospholipase C and lysophospholipase activities, however, were not found in human liver. Cationic amphiphilic drugs inhibited the activities of the acid phospholipases A in human and rat liver lysosomes to about the same extent.  相似文献   

15.
Cardiac sarcolemmal preparations isolated from dog were tested for membrane-associated phospholipase A and lipoprotein lipase activities. The sarcolemma hydrolyzed 1-acyl 214C-linoleoyl 3-glycero-phosphorylethanolamine at pH 7.0 to form predominantly 14C-lyso PE with 5 mM EDTA and 14C-free fatty acid with 5 mM Ca2+ suggesting the presence of both phospholipases A1 and A2 and/or lysophospholipase activities in these preparations. Sarcolemmal PLA activity was stimulated 300% by 10?5 to 10?6 M d1-isoproterenol; this stimulation was blocked by 10?4 M d1-propranolol. Lipoprotein lipase activity associated with the sarcolemmal fraction was enhanced 10-fold by 10?5 M d1-isoproterenol; stimulation was blocked by d1-propranolol. Thus, the activities of membrane-bound lipolytic enzymes appear to be modulated by β-adrenergic agents in canine cardiac sarcolemma and could affect lipid dependent enzymes and/or membrane permeability.  相似文献   

16.
The glycerophosphoinositols, phosphoinositide metabolites formed by Ras-dependent activation of phospholipase A2 and a lysophospholipase, have been proposed to be markers of Ras-induced cell transformation. These compounds can have important cellular effects; GroPIns4P is an inhibitor of G protein-stimulated adenylate cyclase and is transiently produced in several cell types after growth factor receptor stimulation of phosphatidylinositol 3-kinase and the small G protein Rac, indicating the importance of defining further its cellular actions and metabolism. We show here that, in postnuclear membranes from Swiss 3T3 cells, there is no high-affinity 'receptor' binding of GroPIns4P. Instead, possibly through the interaction with a transporter, GroPIns4P rapidly equilibrates between medium and cell cytosol, and, at higher concentrations, can concentrate in the cell cytosol. GroPIns4P can be dephosphorylated to GroPIns in vitro by an enzyme that is membrane-associated, Ca2+-dependent, GroPIns4P-selective and has a specific pH profile. Under in vitro phosphorylating conditions, there is production of GroPIns(4,5)P2 and other inositol phosphates. As these in vitro enzyme activities do not fully correlate with the in vivo handling of GroPIns4P, the intracellular GroPIns4P levels may be controlled by its direct physical removal from the cells.  相似文献   

17.
We have reported previously that a number of metabolites and toxins which cause Ca2+ release from mitochondria do so by increasing the permeability of the inner membrane. The metabolic basis of this permeability change is proposed to be perturbation of a phospholipid deacylation-reacylation cycle which results in an accumulation of free fatty acids and lysophospholipids (see Broekemeier, K. M., Schmid, P. C., Schmid, H. H. O., and Pfeiffer, D. R. (1985) J. Biol. Chem. 260, 105-113 and references therein). This hypothesis predicts that inhibitors of acyl-CoA:lysophospholipid acyltransferase would be among those agents which increase membrane permeability and that their effects on permeability could occur in the absence of pyridine nucleotide oxidation or of an accumulation of glutathione disulfide. The hypolipidemic drugs WY-14643 and clofibric acid inhibit the mitochondrial acyl-CoA:lysophospholipid acyltransferase and have the predicted effects on mitochondrial permeability properties. The development of increased permeability due to WY-14643 and clofibric acid requires accumulated Ca2+ specifically, is sensitive to inhibitors of phospholipase A2, and results in a pattern of solute release and swelling which is typical of other Ca2+-releasing agents. Neither agent promotes pyridine nucleotide nor sulfhydryl glutathione oxidation in the absence of Ca2+. In addition, the swelling response to hypolipidemic drugs is not significantly inhibited by dithiothreitol. In the presence of Ca2+, both agents promote an accumulation of free fatty acids. The composition of these lipid degradation products suggests that mitochondria treated with hypolipidemic drugs retain an active lysophospholipase whereas this enzyme is inactivated by Ca2+-releasing agents which alter mitochondrial sulfhydryl groups.  相似文献   

18.
The first step in the production of eicosanoids and platelet-activating factor is the hydrolysis of arachidonic acid from membrane phospholipid by phospholipase A2. We previously purified from the macrophage cell line RAW 264.7 an intracellular phospholipase A2 that preferentially hydrolyzes sn-2-arachidonic acid. The enzyme exhibits a molecular mass of 100 kDa and an isoelectric point of 5.6. When assayed for other activities, the phospholipase A2 was found to exhibit lysophospholipase activity against palmitoyllysoglycerophosphocholine, and both activities copurified to a single band on silver-stained sodium dodecyl sulfate-polyacrylamide gels. An antibody against the macrophage enzyme was found to quantitatively immunoprecipitate both phospholipase A2 and lysophospholipase activities from a crude cytosolic fraction. When the immunoprecipitated material was analyzed on immunoblots, a single band at 100 kDa was evident, further suggesting that a single protein possessed both enzyme activities. When assayed as a function of palmitoyllysoglycerophosphocholine concentration and plotted as a double-reciprocal plot, two different slopes were apparent, corresponding to concentrations above and below the critical micellar concentration (7 microM) of the substrate. Above the critical micellar concentration, lysophospholipase exhibited an apparent Km of 25 microM and a Vmax of 1.5 mumol/min/mg. Calcium was not required for lysophospholipase activity, in contrast to phospholipase A2 activity. The enzyme, when assayed as either a phospholipase A2 or lysophospholipase, exhibited nonlinear kinetics beyond 1-2 min despite low substrate conversion. Readdition to more substrate after the activity plateaued did not result in further enzyme activity, ruling out substrate depletion. Readdition of enzyme, however, resulted in another burst of enzyme activity. The results are not consistent with product inhibition, but suggest that the enzyme may be subject to inactivation during catalysis.  相似文献   

19.
A Ca2+-dependent lysophospholipase D activity in microsomal preparations from the rabbit kidney medulla hydrolyzes the choline moiety from 1-O-[9,10-3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF) to form 1-O-[9,10-3H]hexadecyl-2-lyso-sn-glycero-3-P; the latter is subsequently dephosphorylated by a phosphohydrolase to 1-O-[9,10-3H]hexadecyl-sn-glycerol. Sodium vanadate, which is known to inhibit phosphohydrolases, reduces the proportion of hexadecylglycerol and increases the formation of hexadecyl-lysoglycerophosphate. Essentially no hydrolysis occurs when the sn-2 position of the hexadecyllysoGPC substrate contains an acyl moiety. The lysophospholipase D in rabbit kidney is of microsomal origin and has a broad pH optimum between 8.0 and 8.8, with the activity decreasing sharply from pH 7.6 to 7.2. Wykle et al. (Biochim. Biophys. Acta 619 (1980) 58-67) have previously demonstrated the existence of a microsomal lysophospholipase D (specific for ether lipid substrates) in rat tissues that requires Mg2+ and exhibits a pH optimum of 7.2; high activities of the Mg2+-dependent lysophospholipase D were found in liver and brain, but not in kidney. In contrast to the Mg2+-dependent lysophospholipase D in rat tissues, the renal enzyme from rabbits requires Ca2+ (5 mM), whereas Mg2+ (5 mM) exhibits little stimulatory action. Under optimal assay conditions (0.1 M Tris-HCl (pH 8.4)/5 mM CaCl2), lysophospholipase D in the rabbit kidney medulla has an activity of 2.7 nmol/min per mg protein compared to 0.9 nmol/min per mg protein for the lysophospholipase D in the rat kidney medulla (0.1 M Tris-HCl (pH 7.2)/5 mM MgCl2). The Ca2+-dependent lysophospholipase D is highest in the liver and kidney medulla from rabbits, but is very low in rat tissues; similar activities were found in male and female rabbits. Our data indicate that the divalent metal ion requirements for expression of maximum lysophospholipase D activities can differ markedly among animal species and also suggest the microsomal Ca2+-dependent lysophospholipase D is an important catabolic route for lyso-PAF metabolism in rabbit renomedullary tissue.  相似文献   

20.
During myocardial ischemia increased levels of lysoglycerophospholipids have been reported which may be deleterious to myocardial function. Phospholipases are presumed to be important in the regulation of this process. To further quantify and characterize the activity of heart phospholipases, we carried out a systematic analysis of phospholipase A activity in rat heart subcellular fractions isolated by the method of Palmer et al. (J. Biol. Chem. 1972. 262: 8731-8739). Neutral phospholipase A was recovered predominately in the cytosolic (soluble) fraction which represented 46% of recovered activity, while the microsomal and subsarcolemmal mitochondrial fractions represented 15% and 12% of the total recovered activity, respectively. Cytosolic phospholipase A differed from the two principal membrane-bound phospholipases A in its pH dependence and apparent Km for substrate. The cytosolic enzyme had a Km (apparent) for dioleoylphosphatidylcholine of 0.07 mM versus 0.28-0.33 mM for the membrane-associated phospholipases A. Acid phospholipase A activity had a subcellular distribution consistent with a lysosomal localization. Lysophospholipase was found principally in the cytosolic, microsomal, and the subsarcolemmal and interfibrillar mitochondrial fractions where it represented 46, 17, 6.3, and 6.9% of the recovered activity, respectively. The positional specificity of the respective phospholipases was assessed. This analysis was complicated by the fact that in heart, lysophospholipase has an observed Vmax 3.6- to 4.5-fold greater than that of phospholipase A in the various subcellular fractions. Equations were derived to obtain corrected values for the activity of phospholipases A1 and A2. Using this method we found that the cytosolic and lysosomal fractions contained phospholipase A1, while the mitochondrial fractions contained primarily phospholipase A2. In heart microsomes, the positional specificity of phospholipase A could not be determined because lysophospholipase activity was very high and lysophosphatidylcholine did not accumulate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号