首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three ecologically and morphologically distinct forms of Arctic charr (Salvelinus alpinus L.) have been identified in Loch Rannoch, Scotland, whose evolutionary status and origins are incompletely understood. A study was made of restriction fragment length polymorphism (RFLPs) detected variation in the D-loop, ND1 and cytochrome b regions of the mitochondrial genome, encompassing >3500 bp. Eight RFLP haplotypes were identified that clustered into three distinct clans based on restriction differences and into four clans based on sequence differences. Significant differences in RFLP frequencies were found among all morph groups. The pelagic morph was highly divergent from the two benthic forms, with the benthic forms having variants from only one genetic clan while the pelagic was dominated by a single variant from another clan. The relative divergence observed among benthic and pelagic forms is ~10 fold greater when nucleotide divergence among the haplotypes, as well as haplotype frequency differences, is taken into account. Sequence divergence between haplotypes in the two main clans is of a similar order to that between haplotypes in these clans and a charr from North America. In contrast, divergence among the two benthic morphs relates entirely to differences in haplotype frequencies. The study confirms the genetic distinctiveness of the pelagic and benthic forms as well as of the two benthic forms. It strongly supports previous evidence that the genetic divergence between the pelagic and benthic populations is allopatric in origin. Additionally, the results strongly suggest that the two benthic populations have undergone peripatric divergence through the sequential colonisation of the two basins by one lineage, followed by their spatial separation and reproductive isolation.  相似文献   

2.
Thingvallavatn, Iceland contains two sympatric morphotypes (benthic and limnetic) of Arctic charr Salvelinus alpinus. Each morphotype is composed of two morphs and these differ markedly in ecology, behaviour and life history. We used molecular genetic approaches to test whether (i) genetic heterogeneity exists among morphs and (ii) if morphs arose in allopatry and came into secondary contact or arose sympatrically within the lake through genetic segregation and/or phenotypic plasticity. Direct sequencing of 275 bp of the mitochondrial DNA (mtDNA) control region, mtDNA restriction fragment length polymorphisms and single locus minisatellite analyses detected insufficient variation to test our hypotheses. Analysis of multilocus minisatellite band sharing detected no significant differences between morphs within the same morphotype. However, significant differences among morphs belonging to different morphotypes suggest some genetic heterogeneity in Thingvallavatn charr. Limnetic charr from Thingvallavatn were more similar to sympatric benthic charr than to allopatric limnetics from two other Icelandic lakes. This suggests that the Thingvallavatn morphs arose sympatrically within the lake rather than in allopatry followed by secondary contact.  相似文献   

3.
The helminth endoparasite fauna in four Arctic charr morphs, Salvelinus alpinus (L.), small benthivorous (SB), large benthivorous (LB), planktivorous (PL) and piscivorous (PI) charr, from Thingvallavatn, Iceland consisted of: Crepidostomum farionis (Trematoda: Allocreadiidae); Diplosttomum sp. (Trematoda: Diplostomatidae); Eubothrium salvelini; Diphyllobothrium dendriticum; D. ditremum (Cestoda: Pseudophyllidae); Proteocephalus longicollis (Cestoda: Proteocepha-lidae): and Philonema oncorhynchi (Nematoda: Filariidae). The morphs exhibited distinctive patterns in prevalences and parasite burdens (mean intensity and mean relative density of parasites). SB charr had high prevalence and parasite burden of the eye fluke Diplostomum sp. and none to very light infections of the other parasite species. LB charr had relatively high prevalence and parasite burden of the intestinal fluke C. farionis , whereas infections of the remaining parasite species were light to moderate. PL and PI charr had high prevalences and worm burdens of Diphyllobothrium spp. and P. longicollis . PL charr differed from PI charr in higher worm burden off P. longicollis and lighter burden of £. salvelini . Prevalences of P. oncorhynchi were high in PL and PI charr. Association of parasite intensities and age and length offish were investigated. The different infection patterns among the morphs agree well with their partitioning in food and habitat utilization, and confirm that there is a high degree of ecological segregation between the morphs. The results demonstrate the importance of ecological factors influencing transmission efficiency of parasites to the fish host.  相似文献   

4.
The expression of two or more discrete phenotypes amongst individuals within a species (morphs) provides multiple modes upon which selection can act semi‐independently, and thus may be an important stage in speciation. In the present study, we compared two sympatric morph systems aiming to address hypotheses related to their evolutionary origin. Arctic charr in sympatry in Loch Tay, Scotland, exhibit one of two discrete, alternative body size phenotypes at maturity (large or small body size). Arctic charr in Loch Awe segregate into two temporally segregated spawning groups (breeding in either spring or autumn). Mitochondrial DNA restriction fragment length polymorphism analysis showed that the morph pairs in both lakes comprise separate gene pools, although segregation of the Loch Awe morphs is more subtle than that of Loch Tay. We conclude that the Loch Awe morphs diverged in situ (within the lake), whereas Loch Tay morphs most likely arose through multiple invasions by different ancestral groups that segregated before post‐glacial invasion (i.e. in allopatry). Both morph pairs showed clear trophic segregation between planktonic and benthic resources (measured by stable isotope analysis) but this was significantly less distinct in Loch Tay than in Loch Awe. By contrast, both inter‐morph morphological and life‐history differences were more subtle in Loch Awe than in Loch Tay. The strong ecological but relatively weak morphological and life‐history divergence of the in situ derived morphs compared to morphs with allopatric origins indicates a strong link between early ecological and subsequent genetic divergence of sympatric origin emerging species pairs. The emergence of parallel specialisms despite distinct genetic origins of these morph pairs suggests that the effect of available foraging opportunities may be at least as important as genetic origin in structuring sympatric divergence in post‐glacial fishes with high levels of phenotypic plasticity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

5.
Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow‐, deep‐water resource axis in a subarctic postglacial lake (Norway). The two deep‐water (profundal) spawning morphs, a benthivore (PB‐morph) and a piscivore (PP‐morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep‐water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small‐sized PB‐morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep‐water sediments. The PP‐morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO‐morph) predominantly utilizes the shallow benthic–pelagic habitat and food resources. Compared to the deep‐water morphs, the LO‐morph had smaller head relative to body size. The LO‐morph exhibited traits typical for both shallow‐water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep‐water habitat for the PB‐ and PP‐morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep‐water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep‐water piscivore morph has to our knowledge not been described elsewhere.  相似文献   

6.
How genetic polymorphisms are maintained in a population is a key question in evolutionary ecology. Previous work on a plumage colour polymorphism in the common buzzard Buteo buteo suggested heterozygote advantage as the mechanism maintaining the co‐existence of three morphs (light, intermediate and dark). We took advantage of 20 years of life‐history data collected in a Dutch population to replicate earlier studies on the relationship between colour morph and fitness in this species. We examined differences between morphs in adult apparent survival, breeding success, annual number of fledglings produced and cumulative reproductive success. We found that cumulative reproductive success differed among morphs, with the intermediate morph having highest fitness. We also found assortative mating for colour morph, whereby assortative pairs were more likely to produce offspring and had longer‐lasting pair bonds than disassortative pairs. Over the 20‐year study period, the proportion of individuals with an intermediate morph increased. This apparent evolutionary change did not just arise from selection on individual phenotypes, but also from fitness benefits of assortative mating. The increased frequency of intermediates might also be due to immigration or drift. We hypothesize that genetic variation is maintained through spatial variation in selection pressures. Further studies should investigate morph‐dependent dispersal behaviour and habitat choice.  相似文献   

7.
8.
One of the primary challenges of evolutionary research is to identify ecological factors that favour reproductive isolation. Therefore, studying partially isolated taxa has the potential to provide novel insight into the mechanisms of evolutionary divergence. Our study utilizes an adaptive colour polymorphism in the arc‐eye hawkfish (Paracirrhites arcatus) to explore the evolution of reproductive barriers in the absence of geographic isolation. Dark and light morphs are ecologically partitioned into basaltic and coral microhabitats a few metres apart. To test whether ecological barriers have reduced gene flow among dark and light phenotypes, we evaluated genetic variation at 30 microsatellite loci and a nuclear exon (Mc1r) associated with melanistic coloration. We report low, but significant microsatellite differentiation among colour morphs and stronger divergence in the coding region of Mc1r indicating signatures of selection. Critically, we observed greater genetic divergence between colour morphs on the same reefs than that between the same morphs in different geographic locations. We hypothesize that adaptation to the contrasting microhabitats is overriding gene flow and is responsible for the partial reproductive isolation observed between sympatric colour morphs. Combined with complementary studies of hawkfish ecology and behaviour, these genetic results indicate an ecological barrier to gene flow initiated by habitat selection and enhanced by assortative mating. Hence, the arc‐eye hawkfish fulfil theoretical expectations for the earliest phase of speciation with gene flow.  相似文献   

9.
Synopsis Iceland is unique in terms of geologically young freshwater systems and rapid adaptations of fresh water fishes to diverse habitats, e.g. lava with ground water flow. Iceland has six species of freshwater fishes, including Arctic charr, Salvelinus alpinus. Previous research has shown great diversity within this species. Four different morphs of Arctic charr are found in one lake, Thingvallavatn, including a small benthivorous charr. Similar populations of small benthic charr are known from several other Icelandic freshwater locations, including Nautavakir in Grímsnes. Our comparison of the small benthic charr morphs in Thingvallavatn and in Grímsnes showed that they are similar in morphology but distinguishable in several characteristics. Small benthic charr in Grímsnes and Thingvallavatn demonstrate similar adaptations and are an example of parallel evolution. However, subtle morphological differences between them indicate further specialized adaptations at each location.  相似文献   

10.
Arctic freshwater ecosystems have been profoundly affected by climate change. Given that the Arctic charr (Salvelinus alpinus) is often the only fish species inhabiting these ecosystems, it represents a valuable model for studying the impacts of climate change on species life‐history diversity and adaptability. Using a genotyping‐by‐sequencing approach, we identified 5,976 neutral single nucleotide polymorphisms and found evidence for reduced gene flow between allopatric morphs from two high Arctic lakes, Linne'vatn (Anadromous, Normal, and Dwarf) and Ellasjøen (Littoral and Pelagic). Within each lake, the degree of genetic differentiation ranged from low (Pelagic vs. Littoral) to moderate (Anadromous and Normal vs. Dwarf). We identified 17 highly diagnostic, putatively adaptive SNPs that differentiated the allopatric morphs. Although we found no evidence for adaptive differences between morphs within Ellasjøen, we found evidence for moderate (Anadromous vs. Normal) to high genetic differentiation (Anadromous and Normal vs. Dwarf) among morphs within Linne'vatn based on two adaptive loci. As these freshwater ecosystems become more productive, the frequency of sympatric morphs in Ellasjøen will likely shift based on foraging opportunities, whereas the propensity to migrate may decrease in Linne'vatn, increasing the frequency of the Normal morph. The Dwarf charr was the most genetically distinct group. Identifying the biological basis for small body size should elucidate the potential for increased growth and subsequent interbreeding with sympatric morphs. Overall, neutral and adaptive genomic differentiation between allopatric and some sympatric morphs suggests that the response of Arctic charr to climate change will be variable across freshwater ecosystems.  相似文献   

11.
Lake Thingvallavatn supports four trophic morphs of Arctic charr, Salvelinus alpinus (L.); two of the morphs are benthic (small and large benthivorous charr) one exploits pelagic waters (planktivorous charr) and the fourth is found in both habitats (piscivorous charr). The morphological variation among these morphs was analysed by use of principal component analysis and canonical discriminant analysis. The benihic morphs have a short lower jaw and long pectoral fins. The benthic fish also have fewer gillrakers than the other morphs. Small and large benthivorous charrs attain sexual maturity from 2 and 6 years of age, and at fork lengths from 7 and 22 cm, respectively. Small benthivorous charr retain their juvenile parr marks as adults, have beige ventral colours, and are frequently melanized under the lower jaw. Planktivorous and piscivorous charr attain sexual maturity from 4 and 6 years of age, from fork lengths of 15 and 23 cm, respectively. This phenotypic polymorphism is associated with habitat utilization and diet of the fish, and has probably arisen within the lake system through diversification and niche specialization. The pelagic morphs apparently stem from a single population, and are possibly diversified through conditional niche shifts which affect ontogeny. Juveniles reaching a body length of 23 cm may change from zooplankton to fish feeding. Asymptotic length increases thereby from 20.5 cm in planktivorous charr to 30.2 cm in piscivorous charr. The benthic morphs appear to represent separate populations, although both feed chiefly on the gastropod Lymnaea peregra. Their co-existence seems to be facilitated by size dependent constraints on habitat use. The small morph (asymptotic length 13.3 cm) exploit the interstitial crevices in the lava block substratum, whereas the large morph (asymptotic length 55.4 cm) live epibenthically.  相似文献   

12.
We evaluated hypotheses of intralacustrine diversification and plastic responses to two diet environments in Icelandic Arctic charr (Salvelinus alpinus). Full‐sib families of progeny of wild polymorphic charr from two lakes where morphs vary in their degree of phenotypic and ecological divergence were split, with half of the offspring reared on a benthic and half on a limnetic type of diet to estimate family norms of reaction. We focused on variation in craniofacial traits because they are probably functionally related to diet and complement a previous study of body shape in these charr. A hierarchical analysis of phenotypic variation between lakes, pairs of morphs within each lake, and two families within each morph found that phenotypic variation partitioned between families relative to morphs was reduced in the more ecologically diversified population, which is consistent with adaptive diversification. The effect size of plastic responses between lake populations was similar, suggesting little difference in the degree of canalization in contrast to a previous analysis of body form plasticity. Thus, the role that plastic morphological responses play in the adaptive diversification of morphs and different lake populations of Arctic charr may depend on the trait. © 2013 The Linnean Society of London  相似文献   

13.
Two morphologically and ecologically distinct forms of Arctic charr, Salvelinus alpinus , are found in Loch Rannoch, Scotland. The differences in morphology are adaptations to different modes of life, one being pelagic, the other benthic. Both forms have been the subjects of extensive genetic studies including cytogenetics, nuclear and mitochondrial DNA analysis, and protein electrophoresis. Significant differences between the two forms are revealed by some techniques but not others and provide evidence for the reproductive isolation of these two morphs. The findings are discussed in relation to the derivation of sympatry and the phylogenetics of Arctic charr.  相似文献   

14.
Population divergence of phytophagous insects is often coupled to host‐plant shifts and is frequently attributed to the divergent selective environments associated with alternative host‐plants. In some cases, however, divergence is associated with the use of alternative host‐plant organs of a single host species. The basis of within‐host radiations such as these remains poorly understood. In the present stusy, we analysed the radiation of Asteromyia gall midges occurring both within one host plant species and within a single organ on that host. In this system, four morphologically distinct Asteromyia gall forms (morphs) coexist on the leaves of goldenrod Solidago altissima. Our analyses of amplified fragment length polymorphism and DNA sequence data confirm the genetic differentiation among midges from three gall morphs and reveal evidence of a genetically distinct fourth gall morph. The absence of clear gall morph related clades in the mitochondrial DNA derived phylogenies is indicative of incomplete lineage sorting or recent gene flow, suggesting that population divergence among gall forms is recent. We assess the likely history of this radiation and use the results of phylogenetic analyses along with ecological data on phenology and parasitism rates to evaluate potential hypotheses for the mode of differentiation. These preliminary analyses suggest that diversification of the Asteromyia gall morphs is likely shaped by interactions between the midge, a symbiotic fungus, and parasitoid enemies. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 840–858.  相似文献   

15.
Gill–netted samples of Arctic charr from Loch Rannoch, Scotland were bimodal when tested by univariate and multivariate morphometric analyses. The separation into two morphs corresponded very closely (95–98%) with fish classified subjectively in the field as benthic or pelagic, based largely on colour differences and ecological observations. The benthic charr had relatively longer heads, larger eyes and more powerful jaws than the pelagic charr. Unlike sympatric morphotypes described from Scandinavia and Greenland, neither Rannoch morph is dwarfed.  相似文献   

16.
Correlations between heterozygosity and fitness are frequently found but rarely well understood. Fitness can be affected by single loci of large effect which correlate with neutral markers via linkage disequilibrium, or as a result of variation in genome‐wide heterozygosity following inbreeding. We explored these alternatives in the common buzzard, a raptor species in which three colour morphs differ in their lifetime reproductive success. Using 18 polymorphic microsatellite loci, we evaluated potential genetic differences among the morphs which may lead to subpopulation structuring and tested for correlations between three fitness‐related traits and heterozygosity, both genome wide and at each locus separately. Despite their assortative mating pattern, the buzzard morphs were found to be genetically undifferentiated. Multilocus heterozygosity was only found to be correlated with a single fitness‐related trait, infection with the blood parasite, Leucocytozoon buteonis, and this was via interactions with vole abundance and age. One locus also showed a significant relationship with blood parasite infection and ectoparasite infestation. The vicinity of this locus contains two genes, one of which is potentially implicated in the immune system of birds. We conclude that genome‐wide heterozygosity is unlikely to be a major determinant of parasite burden and body condition in the polymorphic common buzzard.  相似文献   

17.
Peres-Neto PR  Magnan P 《Oecologia》2004,140(1):36-45
In northern freshwater lakes, several fish species have populations composed of discrete morphs, usually involving a divergence between benthic and limnetic morphs. Although it has been suggested that swimming demand plays an important role in morphological differentiation, thus influencing habitat selection, it is unclear how it affects reaction norms, patterns in character correlation, and levels of morphological integration. We examined whether swimming demand could induce morphological plasticity in the directions expected under divergent habitat selection, and evaluated its influence on the morphological integration in Arctic charr (Salvelinus alpinus) and brook charr (S. fontinalis), two congeneric species exhibiting conspicuous and subtle resource polymorphism, respectively. We found that changes in morphology were induced by differential swimming demands in both species. The length of the pectoral fin was the character that responded most strongly according to the predicted morphological expectations under divergent habitat selection. High levels of morphological plasticity, relatively low levels of integration, and differences found in the morphological correlation structure among water velocity treatments suggest that constraints on morphological change are unlikely in either species, thus allowing great potential for phenotypic flexibility in both species. The magnitude of character integration, however, was larger for Arctic charr than for brook charr. This latter result is discussed in the light of the differences in the level of polymorphism between the two species in the wild. The results of the present study indicate that swimming demand alone may not be sufficient to generate the polymorphism encountered in nature. Given that both diet and swimming demands can induce morphological changes, it would be important to conduct experiments targeting the interaction between the morphological modules related to trophic and swimming demands.  相似文献   

18.
19.
The formation of stable genetic boundaries between emerging species is often diagnosed by reduced hybrid fitness relative to parental taxa. This reduced fitness can arise from endogenous and/or exogenous barriers to gene flow. Although detecting exogenous barriers in nature is difficult, we can estimate the role of ecological divergence in driving species boundaries by integrating molecular and ecological niche modelling tools. Here, we focus on a three‐way secondary contact zone between three viper species (Vipera aspis, V. latastei and V. seoanei) to test for the contribution of ecological divergence to the development of reproductive barriers at several species traits (morphology, nuclear DNA and mitochondrial DNA). Both the nuclear and mitochondrial data show that all taxa are genetically distinct and that the sister species V. aspis and V. latastei hybridize frequently and backcross over several generations. We find that the three taxa have diverged ecologically and meet at a hybrid zone coincident with a steep ecotone between the Atlantic and Mediterranean biogeographical provinces. Integrating landscape and genetic approaches, we show that hybridization is spatially restricted to habitats that are suboptimal for parental taxa. Together, these results suggest that niche separation and adaptation to an ecological gradient confer an important barrier to gene flow among taxa that have not achieved complete reproductive isolation.  相似文献   

20.
Northern freshwater fish may be suitable for the genetic dissection of ecological traits because they invaded new habitats after the last ice age (∼10.000 years ago). Arctic charr (Salvelinus alpinus) colonizing streams and lakes in Iceland gave rise to multiple populations of small benthic morphotypes, often in sympatry with a pelagic morphotype. Earlier studies have revealed significant, but subtle, genetic differentiation between the three most common morphs in Lake Thingvallavatn. We conducted a population genetic screen on four immunological candidate genes Cathelicidin 2 (Cath2), Hepcidin (Hamp), Liver expressed antimicrobial peptide 2a (Leap-2a), and Major Histocompatibility Complex IIα (MHCIIα) and a mitochondrial marker (D-loop) among the three most common Lake Thingvallavatn charr morphs. Significant differences in allele frequencies were found between morphs at the Cath2 and MHCIIα loci. No such signal was detected in the D-loop nor in the other two immunological genes. In Cath2 the small benthic morph deviated from the other two (FST = 0.13), one of the substitutions detected constituting an amino acid replacement polymorphism in the antimicrobial peptide. A more striking difference was found in the MHCIIα. Two haplotypes were very common in the lake, and their frequency differed greatly between the morphotypes (from 22% to 93.5%, FST = 0.67). We then expanded our study by surveying the variation in Cath2 and MHCIIα in 9 Arctic charr populations from around Iceland. The populations varied greatly in terms of allele frequencies at Cath2, but the variation did not correlate with morphotype. At the MHCIIα locus, the variation was nearly identical to the variation in the two benthic morphs of Lake Thingvallavatn. The results are consistent with a scenario where parts of the immune systems have diverged substantially among Arctic charr populations in Iceland, after colonizing the island ∼10.000 years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号