首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
Vertebrate claws are used in a variety of important behaviours and are typically composed of a keratinous sheath overlying the terminal phalanx of a digit. Keratinous claws, however, are rare in living amphibians; their microstructure and other features indicate that they probably originated independently from those in amniotes. Here we show that certain African frogs have a different type of claw, used in defence, that is unique in design among living vertebrates and lacks a keratinous covering. These frogs have sectorial terminal phalanges on their hind feet that become functional by cutting through the skin. In the resting state, the phalanx is subdermal and attached to a distal bony nodule, a neomorphic skeletal element, via collagen-rich connective tissue. When erected, the claw breaks free from the nodule and pierces the ventral skin. The nodule, suspended by a sheath attached to the terminal phalanx and supported by collagenous connections to the dermis, remains fixed in place. While superficially resembling the shape of claws in other tetrapods, these are the only vertebrate claws known to pierce their way to functionality.  相似文献   

2.
The bony cranial structures of even‐toed hoofed mammals are important for understanding ecology and behavior of ruminants. Horns, the cranial appendages of the family Bovidae, are covered in a layer of keratin that is often not preserved in the fossil record; however, this keratin sheath is intimately involved in the processes that influence horn shape evolution. To understand the relationship between these two components of horns, we quantified both core and sheath shape for four extant species using three‐dimensional geometric morphometric analyses in separate, core‐ and sheath‐specific morphospaces as well as a combined morphospace. We assessed correlations between the horn and sheath morphospaces using two‐block partial least squares regression, a Mantel test of pairwise distances between species, and Procrustes ANOVA. We measured disparity in the combined morphospace as Procrustes distances between mean shapes of cores and sheaths within and between species and as Procrustes variance. We also tested whether core and sheath shapes could be discriminated by taxon with a canonical variate analysis. Results show that horn core and sheath morphospaces are strongly correlated. The differences in shape between a species' core and sheath were statistically significant, but not as great as those between the cores and sheaths of different species when close relatives were not considered, and core and sheath Procrustes variances are not significantly different within species. Cores and sheath shapes were highly identifiable and were assigned to the correct clade 93% of the time in the canonical variate analysis. Based on these tests, horn cores are distinguishable in geometric morphometric analyses, extending the possibility of using geometric morphometrics to study the ecology and evolution of bovid horns to the fossil record.  相似文献   

3.
《Journal of morphology》2017,278(2):150-169
The form of amniote claws has been extensively investigated, often with inferences about ecological association being drawn from studies of their geometry. Various methods have been used to quantify differences in the geometry of claws, but rarely have the underlying assumptions of such methods been addressed. Here, we use one set of bird claws and apply six methods (five that have been previously used, and a new one) that are tasked with comparing their shape. In doing so, we compare the (1) ability of these methods to represent the shape of the claw; (2) validity of the assumptions made about underlying claw geometry; (3) their ability to be applied unambiguously; and (4) their ability to differentiate between predetermined functional clusters. We find that of the six methods considered only the geometric morphometric approach reveals differences in the shapes of bird claws. Our comparison shows that geometry‐based methods can provide a general estimate of the degree of curvature of claw arcs, but are unable to differentiate between shapes. Of all of the geometry‐based approaches, we conclude that the adjusted version of the Zani (2000) method is the most useful because it can be applied without ambiguity, and provides a reliable estimate of claw curvature. The three landmarks that define that method (tip and base of the claw arc, plus the intersection between said claw arc and a line drawn perpendicular from the midpoint of tip and claw base) do not all bear biological significance, but relatively clearly circumscribe the length‐to‐height ratio of the claw, which relates to its curvature. Overall, our comparisons reveal that the shape of avian claws does not differ significantly between climbing and perching birds, and that the utilization of preordained functional clusters in comparative data analysis can hinder the discovery of meaningful differences in claw shape. J. Morphol. 278:150–169, 2017. © 2016 Wiley Periodicals,Inc.  相似文献   

4.
Pedal claw geometry can be used to predict behaviour in extant tetrapods and has frequently been used as an indicator of lifestyle and ecology in Mesozoic birds and other fossil reptiles, sometimes without acknowledgement of the caveat that data from other aspects of morphology and proportions also need to be considered. Variation in styles of measurement (both inner and outer claw curvature angles) has made it difficult to compare results across studies, as have over-simplified ecological categories. We sought to increase sample size in a new analysis devised to test claw geometry against ecological niche. We found that taxa from different behavioural categories overlapped extensively in claw geometry. Whilst most taxa plotted as predicted, some fossil taxa were recovered in unexpected positions. Inner and outer claw curvatures were statistically correlated, and both correlated with relative claw robusticity (mid-point claw height). We corrected for mass and phylogeny, as both likely influence claw morphology. We conclude that there is no strong mass-specific effect on claw curvature; furthermore, correlations between claw geometry and behaviour are consistent across disparate clades. By using independent contrasts to correct for phylogeny, we found little significant relationship between claw geometry and behaviour. ‘Ground-dweller’ claws are less curved and relatively dorsoventrally deep relative to those of other behavioural categories; beyond this it is difficult to assign an explicit category to a claw based purely on geometry.  相似文献   

5.
6.
The material properties and morphologies of the modified integumentary organs of birds (the keratinous bills, claws and feathers) have evolved to withstand the variety of mechanical stresses imposed by their interaction with the environment. These stresses are likely to vary temporally in seasonal environments and may also differ between the sexes as a result of behavioural dimorphism. Here we investigate the morphology and material properties of the claws of male and female Svalbard ptarmigan (Lagopus muta hyperborea) during the summer and winter using nanoindentation. Despite differences in locomotor demands between the sexes and pronounced seasonal differences in environmental conditions, like ground substrate, ambient temperature and day length, there was no significant difference in Young׳s modulus or hardness between the seasons for each sex. However, when comparing males and females, female claws were significantly harder than those of males and both sexes had significantly wider claws during winter. We propose that wider claws may follow winter claw moulting as the claws are regrown and form an important part of the ptarmigan׳s snowshoe-like foot that is an adaptation to locomotion on snow. Future work focusing on growth rates and more broad measures of material properties in both captive and wild birds is required to determine the extent of seasonal and sex differences in the material properties of their keratinous structures.  相似文献   

7.
8.
The link between claw morphology and function has been historically difficult to quantify, analyze, and interpret. A confounding factor is the ambiguous morphological relationship between the ungual and the sheath and whether one structure or the other is more useful for inferring function from morphology. In this study, the functional morphology of vertebrate claws is analyzed using sheath and ungual measurements taken from modern claw specimens spanning birds and mammals. Claw measurements were chosen for their potential biomechanical significance and a revised, expanded categorization of claw function is used. When corresponding claw measurements from the ungual and sheath are compared independently, some features are highly correlated whereas others are not. A principal component analysis of the claw measurements reveals that some of the morphological disparity is related to functional differences; however, different functional categories are not clearly separated based solely on morphology. A linear discriminant analysis incorporating a supervised dimensionality reduction method (J-function) successfully classifies 94.52% of the claw specimens to their documented functional categories. When the posterior probabilities of each classification are examined, and the next highest probabilities are considered, the analysis can successfully classify 98.63% of the claw specimens. Sheath measurements perform better than ungual measurements but combining measurements from both structures perform better than considering either structure individually. Both structures contribute valuable morphological information when it comes to inferring claw function from morphology.  相似文献   

9.
The limbs of mammals exhibit a variety of morphologies that reflect the diversity of their habitats and their functional needs, including subtle structural differences in their distal limb integumentary appendages (hooks, claws, adhesive pads). Little is known about structure and function of claws of sigmodontine rodents. Here, we analyze claw shape and forelimb skeleton morphology of 25 species of sigmodontine rodents with different locomotory types (ambulatory, fossorial, natatorial, quadrupedal saltatorial, and scansorial), taking into account their phylogenetic affinities. Qualitative differences in claw shape were examined using digital photographs, and quantitative measurements were made for length, height, and curvature of the claws of all digits, and dimensions of other forelimb skeletal elements. Our results show that both phylogeny and ecological categories explain substantial components of the morphological variation in sigmodontine rodents. Qualitative analysis reveals that non-specialized forms (ambulatory, quadrupedal saltatorial, and scansorial) tend to have high and strongly curved claws, whereas highly specialized forms (fossorial and natatorial) tend to have elongate and smoothly curved claws. However, the quantitative analysis differentiated the fossorial and scansorial by variables related to claw, and natatorial by variables related to bones of the forelimb. No variables that could differentiate ambulatory or quadrupedal saltatorial forms were found, demonstrating that these forms show a generalized morphological pattern. This study indicates that both historical and ecological factors contribute to the evolution of claw length in these groups.  相似文献   

10.
The ability to regenerate lost tissues, organs or whole body parts is widespread across animal taxa; in some animals, regeneration includes transforming a remaining structure to replace the one that was lost. The transformation of one limb into another involves considerable plasticity in morphology, physiology and behavior, and snapping shrimp offer excellent opportunities for studying this process. We examined the changes required for the transformation of the small pincer to a mature snapping claw in Alpheus angulosus. First molt claws differ from mature claws in overall shape as well as in morphology related to snapping function; nonetheless, shrimp with first molt claws do produce snaps. While most shape variables of second molt claws do not differ significantly from mature claws, the plunger (structure required for snap production) does not reach mature size until the third molt for females, or later for males. Thus, the pincer claw can be transformed into a functional snapping claw in one molt, although both the underlying morphology and superficial shape are not fully regenerated at this stage. The rapid production of a functional snapping claw that we observe in this study suggests that this particular function is of significant importance to snapping shrimp behavior and survival.  相似文献   

11.
Most non-avian theropod dinosaurs are characterized by fearsome serrated teeth and sharp recurved claws. Interpretation of theropod predatory ecology is typically based on functional morphological analysis of these and other physical features. The notorious hypertrophied 'killing claw' on pedal digit (D) II of the maniraptoran theropod Deinonychus (Paraves: Dromaeosauridae) is hypothesized to have been a predatory adaptation for slashing or climbing, leading to the suggestion that Deinonychus and other dromaeosaurids were cursorial predators specialized for actively attacking and killing prey several times larger than themselves. However, this hypothesis is problematic as extant animals that possess similarly hypertrophied claws do not use them to slash or climb up prey. Here we offer an alternative interpretation: that the hypertrophied D-II claw of dromaeosaurids was functionally analogous to the enlarged talon also found on D-II of extant Accipitridae (hawks and eagles; one family of the birds commonly known as "raptors"). Here, the talon is used to maintain grip on prey of subequal body size to the predator, while the victim is pinned down by the body weight of the raptor and dismembered by the beak. The foot of Deinonychus exhibits morphology consistent with a grasping function, supportive of the prey immobilisation behavior model. Opposite morphological trends within Deinonychosauria (Dromaeosauridae + Troodontidae) are indicative of ecological separation. Placed in context of avian evolution, the grasping foot of Deinonychus and other terrestrial predatory paravians is hypothesized to have been an exaptation for the grasping foot of arboreal perching birds. Here we also describe "stability flapping", a novel behaviour executed for positioning and stability during the initial stages of prey immobilisation, which may have been pivotal to the evolution of the flapping stroke. These findings overhaul our perception of predatory dinosaurs and highlight the role of exaptation in the evolution of novel structures and behaviours.  相似文献   

12.
One of the central topics in evolutionary biology is understanding the processes responsible for phenotypic diversification related to ecological factors. New World monkeys are an excellent reference system to investigate processes of diversification at macroevolutionary scales. Here, we investigate the cranial shape diversification related to body size and ecology during the phylogenetic branching process of platyrrhines. To investigate this diversification, we used geometric morphometric techniques, a molecular phylogenetic tree, ecological data and phylogenetic comparative methods. Our statistical analyses demonstrated that the phylogenetic branching process is the most important dimension to understand cranial shape variation among extant platyrrhines and suggested that the main shape divergence among the four principal platyrrhine clades probably occurred during the initial branching process. The phylogenetic conservatism, which is the retention of ancestral traits over time within the four principal platyrrhine clades, could be the most important characteristic of platyrrhine cranial shape diversification. Different factors might have driven early shape divergence and posterior relative conservatism, including genetic drift, stabilizing selection, genetic constraints owing to pleiotropy, developmental or functional constraint, lack of genetic variation, among others. Understanding the processes driving the diversification among platyrrhines will probably require further palaeontological, phylogenetic and comparative studies.  相似文献   

13.
Claws are consistent components of amniote anatomy and may thus be implicated in the success of the amniote invasion of land. However, the evolutionary origin of these structures in tetrapods is unclear. Claws are present in certain extant non-amniotes, such as Xenopus laevis, the African clawed frog. The histology of the soft tissue component of the claws of X. laevis is described and compared with the amniote condition in order to gain new information on the question of homology of claws in these two groups based on patterns of keratinization.The X. laevis claw sheath is composed of a localized thickening of the corneous region of the epidermis that envelops the terminal phalanx. Noted differences between the non-cornified layers of the epidermis of the claw and non-claw region are the overall grainier appearance of the cells and an increased abundance of desmosomes in the intermediate spinosus cells. The biochemical identity of the sheath keratin(s) is inferred to be different from that of non-claw region epidermis, based on histological differences and differences in stain affinity between the two regions. The microstructure of the frog claw differs from that of amniotes in several respects, including the lack of a specified zone of growth near the base of the claw. Amphibians and amniotes, therefore, have very different patterns of claw sheath growth. Observations do not support homology of claws on a structural level in these two groups; however, further experimental work may confirm a conserved pattern of cornification in these structures in tetrapods.  相似文献   

14.
Stable isotopes derived from the claws of birds could be used to determine the migratory origins of birds if the time periods represented in excised sections of claws were known. We investigated new keratin growth in the claws of adult female Lesser Scaup (Aythya affinis) by estimating the equilibration rates of stable isotopes (δ 13C, δ 15N, and δ 2H) from the breeding grounds into 1 mm claw tips. We sampled birds on their breeding ground through time and found that it took approximately 3–3.5 months for isotope values in most claw tips to equilibrate to isotope values that reflected those present in the environment on their breeding grounds. Results from this study suggest that isotopes equilibrate slowly into claw tips of Lesser Scaup, suggesting isotopes could potentially be used to determine the wintering grounds of birds. We suggest using controlled feeding experiments or longitudinal field investigations to understand claw growth and isotopic equilibration in claw tips. Such information would be valuable in ascertaining whether claw tips can be used in future studies to identify the migratory origins of birds.  相似文献   

15.
In this study, the subject of whether investment in one bilateral structure was linked to investment in the homologous bilateral opposite structure was investigated. Male fiddler crabs (genus Uca, family Ocypodidae) displayed strong bilateral claw differentiation of function and size, which are used for feeding (minor claw) or display/combat (major claw). Females had similar‐sized feeding claws. Linkage between claw size was investigated by estimating the deviations from an overall fitted regression of claw length to body size. The positive correlations of the deviations of claw size for major and minor claws of males and between right and left claws of females, relative to body size, suggested a linkage in investment between one claw and the corresponding claw on the other side of the body, for both monomorphic females and dimorphic males. A signal to send resources may be effectively gated to the claw complex, suggesting that positively correlated resources are allocated to both claws. Positive correlations were also found at the interspecific level. The fiddler crab model, described here, gives access to study the linkage in symmetric and asymmetric bilateral structures in the same species with a connection to the macroevolutionary level.  相似文献   

16.
We assessed the influence of a variety of aspects of locomotion and ecology including gait and locomotor types, maximal running speed, home range, and body size on postcranial shape variation in small to medium-sized mammals, employing geometric morphometric analysis and phylogenetic comparative methods. The four views analyzed, i.e., dorsal view of the penultimate lumbar vertebra, lateral view of the pelvis, posterior view of the proximal femur and proximal view of the tibia, showed clear phylogenetic signal and interesting patterns of association with movement. Variation in home range size was related to some tibia shape changes, while speed was associated with lumbar vertebra, pelvis and tibia shape changes. Femur shape was not related to any locomotor variables. In both locomotor type and high-speed gait analyses, locomotor groups were distinguished in both pelvis and tibia shape analyses. These results suggest that adaptations to both typical and high-speed gaits could explain a considerable portion of the shape of those elements. In addition, lumbar vertebra and tibia showed non-significant relationships with body mass, which suggests that they might be used in morpho-functional analyses and locomotor inferences on fossil taxa, with little or no bias for body size. Lastly, we observed morpho-functional convergences among several mammalian taxa and detected some taxa that achieve similar locomotor features following different morphological paths.  相似文献   

17.
Noting that some ground-dwelling passerine birds have remarkably long claws, reflected in such names as longclaw (Motacillidae) and longspur (Emberizidae), this comparative study assessed whether these features might aid movement over grassy ground vegetation. Using measurements of museum specimens, we found that, corrected for body size, larks (Alaudidae) living in grassy habitats ( n =31) had significantly longer toes and claws and hence larger footspans than species dwelling on bare substrates ( n =25). Using phylogenetically corrected contrasts, the claw result remained strongly significant, and the footspan result marginally significant, while there was no significant difference between the toes of the two groups. Among 15 matched pairs of other ground-dwelling passerines, where one member of the pair inhabits vegetated ground and the other inhabits bare ground, the former had significantly longer toes and claws and hence larger footspans. We conclude that ground-dwelling passerines living on vegetated, typically grassy ground, have larger feet, due to both longer toes and claws. This probably facilitates movement over uneven and unstable vegetation.  相似文献   

18.
Wheatears of the genus Oenanthe are birds specialized to desert ecosystems in the Palaearctic region from Morocco to China. Although they have been the subject of many morphological and ecological studies, no molecular data have been used to elucidate their phylogenetic relationships, and, their relationships are still debated. Here we use DNA sequences of 1180 bp of two mitochondrial genes, 16S rRNA and cytochrome oxidase subunit I, from 32 individuals from Middle East and North Africa, and Bayesian methods to derive a phylogeny for 11 species of Oenanthe. The resulting tree supported three major clades: (A) O. alboniger, O. chrysopygia, O. lugens, O. finschii, O. leucopyga, O. picata, O. moesta, (B) O. deserti and O. pleschanka; and (C) O. isabellina and O. oenanthe. These results largely differ from previous hypotheses based on analysis of morphological and chromatic characters. However, the two clades (B) and (C) were also supported by a phenetic analysis of new morphometric data presented here, indicating that characters related to colouration and ecology in Oenanthe are more strongly influenced by homoplasy than those of body shape.  相似文献   

19.
The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species. The main differences in shape concern the length of the whole body and the relative sizes of the head and caudal peduncle. We investigated the influence of phylogeny on similarity of shape using both distance-based and variance partitioning methods, finding that phylogenetic inertia exerts little influence on overall body shape. Therefore, we quantified the relative effect of major ecological traits on shape using phylogenetic generalized least squares and disparity analyses. These analyses conclude that body shape is most strongly predicted by feeding preferences (i.e., trophic niches) and the water depths at which species occur. Furthermore, the morphological disparity within tribes indicates that even though the morphological diversification associated with explosive speciation has happened in only a few tribes of the Tanganyikan assemblage, the potential to evolve diverse morphologies exists in all tribes. Quantitative data support the existence of extensive parallelism in several independent adaptive radiations in Lake Tanganyika. Notably, Tanganyikan mouthbrooders belonging to the C-lineage and the substrate spawning Lamprologini have evolved a multitude of different shapes from elongated and Lamprologus-like hypothetical ancestors. Together, these data demonstrate strong support for the adaptive character of East African cichlid radiations.  相似文献   

20.
Numerous studies investigate morphology in the context of habitat, and lizards have received particular attention. Substrate usage is often reflected in the morphology of characters associated with locomotion, and, as a result, claws have become well‐studied ecomorphological traits linking the two. The Kimberley predator guild of Western Australia consists of 10 sympatric varanid species. The purpose of this study was to quantify claw size and shape in the guild using geometric morphometrics, and determine whether these features correlated with substrate use and habitat. Each species was assigned a Habitat/substrate group based on the substrate their claws interact with in their respective habitat. Claw morphometrics were derived for both wild caught and preserved specimens from museum collections, using a 2D semilandmark analysis. Claw shape significantly separated based on Habitat/substrate group. Varanus gouldii and Varanus panoptes claws were associated with sprinting and extensive digging. Varanus mertensi claws were for shallow excavation. The remaining species’ claws reflected specialization for some form of climbing, and differed based on substrate compliance. Varanus glauerti was best adapted for climbing rough sandstone, whereas Varanus scalaris and Varanus tristis had claws ideal for puncturing wood. Phylogenetic signal also significantly influenced claw shape, with Habitat/substrate group limited to certain clades. Positive size allometry allowed for claws to cope with mass increases, and shape allometry reflected a potential size limit on climbing. Claw morphology may facilitate niche separation within this trophic guild, especially when considered with body size. As these varanids are generalist predators, morphological traits associated with locomotion may be more reliable candidates for detecting niche partitioning than those associated directly with diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号