首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Voltage-gated sodium channels are required for the initiation and propagation of action potentials. Mutations in the neuronal voltage-gated sodium channel SCN1A are associated with a growing number of disorders including generalized epilepsy with febrile seizures plus (GEFS+),7 severe myoclonic epilepsy of infancy, and familial hemiplegic migraine. To gain insight into the effect of SCN1A mutations on neuronal excitability, we introduced the human GEFS+ mutation SCN1A-R1648H into the orthologous mouse gene. Scn1aRH/RH mice homozygous for the R1648H mutation exhibit spontaneous generalized seizures and premature death between P16 and P26, whereas Scn1aRH/+ heterozygous mice exhibit infrequent spontaneous generalized seizures, reduced threshold and accelerated propagation of febrile seizures, and decreased threshold to flurothyl-induced seizures. Inhibitory cortical interneurons from P5-P15 Scn1aRH/+ and Scn1aRH/RH mice demonstrated slower recovery from inactivation, greater use-dependent inactivation, and reduced action potential firing compared with wild-type cells. Excitatory cortical pyramidal neurons were mostly unaffected. These results suggest that this SCN1A mutation predominantly impairs sodium channel activity in interneurons, leading to decreased inhibition. Decreased inhibition may be a common mechanism underlying clinically distinct SCN1A-derived disorders.  相似文献   

3.
The LGI1 gene suppresses invasion in glioma cells and predisposes to epilepsy. In a gene expression array comparison between parental cells and T98G cell clones forced to express LGI1, we demonstrate that the canonical axon guidance pathway is the most significantly affected. In particular, aspects of axon guidance that involve reorganization of the actin cytoskeleton, which is also involved in cell movement and invasion, were affected. Analysis of actin fiber organization using fluorescence microscopy demonstrated that different T98G cell clones expressing the exogenous LGI1 gene show high levels of stress fibers compared with controls. Since stress fiber formation is associated with loss of cell mobility, we used scratch wound assays to demonstrate that LGI1-expressing clones show a significant reduction in cell mobility. LGI1 reexpression also resulted in loss of the PDGFRA and EGFR proteins, suggesting a rapid turnover of these receptors despite increased mRNA levels for PDGFRA. LGI1 suppression of invasion is associated with loss of ERK/MAPK1 activation. LGI1 is a secreted protein, and when the culture supernatant from cells expressing FLAG- and GFP-tagged proteins were applied to parental T98G cells, ERK/MAPK1 phosphorylation and cell mobility was suppressed, demonstrating that the LGI1 protein acts as a suppressive agent for cell movement in this assay. These observations support a previous suggestion that LGI1 can reduce cellular invasion in in vitro assays and, as a secreted agent, may be developed as a means of treating metastatic cancer. In addition, this observation provides a mechanistic link for LGI1's common role in metastasis and epilepsy development.  相似文献   

4.
Mutations in the voltage-gated sodium channels SCN1A and SCN2A are responsible for several types of human epilepsy. Variable expressivity among family members is a common feature of these inherited epilepsies, suggesting that genetic modifiers may influence the clinical manifestation of epilepsy. The transgenic mouse model Scn2aQ54 has an epilepsy phenotype as a result of a mutation in Scn2a that slows channel inactivation. The mice display progressive epilepsy that begins with short-duration partial seizures that appear to originate in the hippocampus. The partial seizures become more frequent and of longer duration with age and often induce secondary generalized seizures. Clinical severity of the Scn2aQ54 phenotype is influenced by genetic background. Congenic C57BL/6J.Q54 mice exhibit decreased incidence of spontaneous seizures, delayed seizure onset, and longer survival in comparison with [C57BL/6J × SJL/J]F1.Q54 mice. This observation indicates that strain SJL/J carries dominant modifier alleles at one or more loci that determine the severity of the epilepsy phenotype. Genome-wide interval mapping in an N2 backcross revealed two modifier loci on Chromosomes 11 and 19 that influence the clinical severity of of this sodium channel-induced epilepsy. Modifier genes affecting clinical severity in the Scn2aQ54 mouse model may contribute to the variable expressivity seen in epilepsy patients with sodium channel mutations.  相似文献   

5.
6.
Epilepsy is a common neurological disorder affecting approximately 1% of the population. Mutations in voltage‐gated sodium channels are responsible for several monogenic epilepsy syndromes. More than 800 mutations in the voltage‐gated sodium channel SCN1A have been reported in patients with generalized epilepsy with febrile seizures plus and Dravet syndrome. Heterozygous loss‐of‐function mutations in SCN1A result in Dravet syndrome, a severe infant‐onset epileptic encephalopathy characterized by intractable seizures, developmental delays and increased mortality. A common feature of monogenic epilepsies is variable expressivity among individuals with the same mutation, suggesting that genetic modifiers may influence clinical severity. Mice with heterozygous deletion of Scn1a (Scn1a+/?) model a number of Dravet syndrome features, including spontaneous seizures and premature lethality. Phenotype severity in Scn1a+/? mice is strongly dependent on strain background. On the 129S6/SvEvTac strain Scn1a+/? mice exhibit no overt phenotype, whereas on the (C57BL/6J × 129S6/SvEvTac)F1 strain Scn1a+/? mice exhibit spontaneous seizures and early lethality. To systematically identify loci that influence premature lethality in Scn1a+/? mice, we performed genome scans on reciprocal backcrosses. Quantitative trait locus mapping revealed modifier loci on mouse chromosomes 5, 7, 8 and 11. RNA‐seq analysis of strain‐dependent gene expression, regulation and coding sequence variation provided a list of potential functional candidate genes at each locus. Identification of modifier genes that influence survival in Scn1a+/? mice will improve our understanding of the pathophysiology of Dravet syndrome and may suggest novel therapeutic strategies for improved treatment of human patients.  相似文献   

7.
Mesial temporal lobe epilepsy (MTLE) is characterized by spontaneous recurrent complex partial seizures. Increased neurogenesis and neuronal plasticity have been reported in animal models of MTLE, but not in detail in human MTLE cases. Here, we showed that receptor for activated C kinase 1 (RACK1) was expressed in the hippocampus and temporal cortex of the MTLE human brain. Interestingly, most of the cells expressing RACK1 in the epileptic temporal cortices co‐expressed both polysialylated neural cell adhesion molecules, the migrating neuroblast marker, and the beta‐tubulin isotype III, an early neuronal marker, suggesting that these cells may be post‐mitotic neurons in the early phase of neuronal development. A subpopulation of RACK1‐positive cells also co‐express neuronal nuclei, a mature neuronal marker, suggesting that epilepsy may promote the generation of new neurons. Moreover, in the epileptic temporal cortices, the co‐expression of both axonal and dendritic markers in the majority of RACK1‐positive cells hints at enhanced neuronal plasticity. The expression of β‐tubulin II (TUBB2B) associated with neuronal migration and positioning, was decreased. This study is the first to successfully identify a single population of cells expressing RACK1 in the human temporal cortex and the brain of the animal model, which can be up‐regulated in epilepsy. Therefore, it is possible that these cells are functionally relevant to the pathophysiology of epilepsy.

  相似文献   


8.
One quadrillion synapses are laid in the first two years of postnatal construction of the human brain, which are then pruned until age 10 to 500 trillion synapses composing the final network. Genetic epilepsies are the most common neurological diseases with onset during pruning, affecting 0.5% of 2-10-year-old children, and these epilepsies are often characterized by spontaneous remission. We previously described a remitting epilepsy in the Lagotto romagnolo canine breed. Here, we identify the gene defect and affected neurochemical pathway. We reconstructed a large Lagotto pedigree of around 34 affected animals. Using genome-wide association in 11 discordant sib-pairs from this pedigree, we mapped the disease locus to a 1.7 Mb region of homozygosity in chromosome 3 where we identified a protein-truncating mutation in the Lgi2 gene, a homologue of the human epilepsy gene LGI1. We show that LGI2, like LGI1, is neuronally secreted and acts on metalloproteinase-lacking members of the ADAM family of neuronal receptors, which function in synapse remodeling, and that LGI2 truncation, like LGI1 truncations, prevents secretion and ADAM interaction. The resulting epilepsy onsets at around seven weeks (equivalent to human two years), and remits by four months (human eight years), versus onset after age eight in the majority of human patients with LGI1 mutations. Finally, we show that Lgi2 is expressed highly in the immediate post-natal period until halfway through pruning, unlike Lgi1, which is expressed in the latter part of pruning and beyond. LGI2 acts at least in part through the same ADAM receptors as LGI1, but earlier, ensuring electrical stability (absence of epilepsy) during pruning years, preceding this same function performed by LGI1 in later years. LGI2 should be considered a candidate gene for common remitting childhood epilepsies, and LGI2-to-LGI1 transition for mechanisms of childhood epilepsy remission.  相似文献   

9.
ADAM metallopeptidase domain 22 (ADAM22) is a neuronal membrane-spanning protein that is a potential receptor for leucine-rich, glioma-inactivated 1 (LGI1), and leucine-rich repeat LGI family, member 4 (LGI4). Several lines of study have shown a direct interaction between ADAM22 and LGI1, a mutation which is responsible for inherited epilepsy in humans. Both ADAM22-deficient mice and claw paw mice, congenitally deficient in LGI4, show hypomyelination in the peripheral nerves, suggesting that these molecules are involved in myelination processes. These findings mark ADAM22 as a potential target molecule for epilepsy or demyelination diseases. To investigate the relationship between ADAM22 mutation and its biological character, we designed and examined several ADAM22 variants. We discovered that the ADAM22 P81R variant, the most common polymorphic variation, works as well as the wild-type ADAM22. We also showed that mutations in the disintegrin domain cause a marked decrease in the processing of ADAM22 preproteins, and result in reduced LGI4-binding abilities. Our findings provide valuable information for mutation screening of the ADAM22 gene in patients suffering from epilepsy or demyelinating diseases.  相似文献   

10.
The LGI1 gene has been implicated in the development of epilepsy and the invasion phenotype of glial cells. Controversy over the specific tissue expression pattern of this gene has stemmed from conflicting reports generated using immunohistochemistry and the polymerase chain reaction. LGI1 is one of a four-member family of secreted proteins with high homology and here we demonstrate, using GFP-tagged constructs from the four LGI1family members, that commonly used antibodies against LGI1 cross-react with different family members. With the uncertainty surrounding the use of commercially available antibodies to truly establish the expression pattern of LGI1, we generated transgenic mice carrying the LGI1-containing BAC, RP23-127G7, which had been modified to express the GFP reporter gene under the control of the endogenous regulatory elements required for LGI1 expression. Three founder mice were generated, and immunohistochemistry was used to determine the tissue-specific pattern of expression. In the brain, distinct regions of glial and neuronal cell expression were identified, as well as the choriod plexus, which is largely pia-derived. In addition, strong expression levels were identified in glandular regions of the prostate, individual tubules in the kidney, sympathetic ganglia in the kidney, sebaceous glands in the skin, the islets of Langerhans, the endometrium, and the ovary and testes. All other major organs analyzed were negative. The pattern of reporter gene expression was identical in three individual founder mice, arguing against a position effect altering expression profile due to the integration site of the BAC.  相似文献   

11.
The rate at which mutant genes producing an epileptic phenotype in mice have been identified over the past few years has been astounding. Manipulating the genome of mice has led to identification of a diversity of genes whose absence or modification either causes epileptic seizures or, conversely, limits epileptogenesis. In addition, positional cloning of genes in which spontaneously arising mutations cause epilepsy in mice has led to the identification of genes encoding voltage- and ligand-gated ion channels. Finally, engineering a mutation that mimics a rare form of human epilepsy has led to a mouse line with a phenotype similar to that of the human disease. Taken together, these discoveries promise to shed light on the mechanisms underlying genetic control of neuronal excitability, suggest candidate genes underlying genetic forms of human epilepsy, and provide a valuable model with which to elucidate how the genotype produces the phenotype of a rare form of human epilepsy.  相似文献   

12.
Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution.  相似文献   

13.
Genetic Epilepsy Model Derived from Common Inbred Mouse Strains   总被引:7,自引:0,他引:7       下载免费PDF全文
The recombinant inbred mouse strain, SWXL-4, exhibits tonic-clonic and generalized seizures similar to the commonest epilepsies in humans. In SWXL-4 animals, seizures are observed following routine handling at about 80 days of age and may be induced as early as 55 days by rhythmic gentle tossing. Seizures are accompanied by rapid, bilateral high frequency spike cortical discharges and followed by a quiescent post-ictal phase. Immunohistochemistry of the immediate early gene products c-Fos and c-Jun revealed abnormal activation within cortical and limbic structures. The seizure phenotype of SWXL-4 can be explained and replicated fully by the inheritance of susceptibility alleles from its progenitor strains, SWR/J and C57L/J. Outcrosses of SWXL-4 with most other common inbred strains result in F(1) hybrids that have seizures at least as frequently as SWXL-4 itself. Quantitative trait locus mapping reveals a seizure frequency determinant, Szf1, near the pink-eyed dilution locus on chromosome 7, accounting for up to 32% of the genetic variance in an F(2) intercross between SWXL-4 and the linkage testing strain ABP/Le. These studies demonstrate that common strains of mice such as SWR and C57L contain latent epilepsy susceptibility alleles. Although the inheritance of susceptibility may be complex, these results imply that a number of potentially important and practical, noninvasive models for this disorder can be constructred and studied in crosses between common mouse strains.  相似文献   

14.
Status epilepticus (SE) is a severe clinical manifestation of epilepsy associated with intense neuronal loss and inflammation, two key factors involved in the pathophysiology of temporal lobe epilepsy. Bone marrow mononuclear cells (BMMC) attenuated the consequences of pilocarpine-induced SE, including neuronal loss, in addition to frequency and duration of seizures. Here we investigated the effects of BMMC transplanted early after the onset of SE in mice, as well as the involvement of soluble factors produced by BMMC in the effects of the cell therapy. Mice were injected with pilocarpine for SE induction and randomized into three groups: transplanted intravenously with 1 × 107 BMMC isolated from GFP transgenic mice, injected with BMMC lysate, and saline-treated controls. Cell tracking, neuronal counting in hippocampal subfields and cytokine analysis in the serum and brain were performed. BMMC were found in the brain 4 h following transplantation and their numbers progressively decreased until 24 h following transplantation. A reduction in hippocampal neuronal loss after SE was found in mice treated with live BMMC and BMMC lysate when compared to saline-treated, SE-induced mice. Moreover, the expression of inflammatory cytokines IL-1β, TNF-α, IL-6 was decreased after injection of live BMMC and to a lesser extent, of BMMC lysate, when compared to SE-induced controls. In contrast, IL-10 expression was increased. Analysis of markers for microglia activation demonstrated a reduction of the expression of genes related to type 1-activation. BMMC transplantation promotes neuroprotection and mediates anti-inflammatory effects following SE in mice, possibly through the secretion of soluble factors.  相似文献   

15.
In subjects with Zellweger syndrome, the most severe phenotype of peroxisomal biogenesis disorder, brain abnormalities include cortical dysplasia, neuronal heterotopia, and dysmyelination. To clarify the relationship between the lack of peroxisomes and neuronal abnormalities, we investigated peroxisomal localization in the mouse cerebellum, using double immunofluorescent staining for peroxisomal proteins. On immunostaining for peroxisomal matrix protein, while there are few peroxisomes in Purkinje cells, many locate in astroglia, especially soma of Bergmann glia. Clusters of peroxisomes were seen on the inferior side of the Purkinje cell layer in mice on postnatal days 3-5, and with time there was a shift to the superior side. The peroxisomal punctate pattern was seen to be radial and co-localized with Bergmann glial fibers. In cultured cells from the mouse cerebellum, peroxisomes were few in Purkinje cells, whereas many were evident in glial fibrillary acidic protein-positive cells. On the other hand, on immunostaining for peroxisomal membrane protein Pex14p, many particles were seen in Purkinje cells during all developmental stages, which means Purkinje cells possessed empty peroxisomal structures similar to findings of fibroblasts from the Zellweger patients. As peroxisomes in glial cells may control the development of neurons, the neuron-glial interaction and mechanisms of developing central nervous systems deserve ongoing attention.  相似文献   

16.
The LGI1 gene has been implicated in the malignant progression of glioblastoma and it has also been genetically linked to a form of partial epilepsy (ADLTE). In this study, we investigated the relevance of LGI1 expression for neuroblastoma cells. The analysis of two cell lines (SH-SY5Y and SK-N-BE) revealed unpredictably low levels of LGI1 and stable cell transfection with LGI1 cDNA yielded moderate increases of LGI1 expression. Neuroblastoma cell clones exhibited impaired cell growth and survival ability in relation to LGI1 levels. The process of growth inhibition could be discerned under experimental conditions of low cell density, since conditions of elevated cell density, which enhance the requirement for survival stimuli, resulted in massive cellular death. At high cell density, spontaneous apoptosis of LGI1 cells was clearly shown by the release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria and by phosphatydil serine exposure and nuclear fragmentation. Activation of apoptotic effectors caspase-3/7 also occurred, however, the broad caspase inhibitor Z-VAD-FMK substantially failed to block cell death. Thus the possibility that LGI1-triggered apoptosis may involve initiator caspases linked to activation of death receptors, appears unlikely. The decreased ratio of Bcl-2 to Bax suggests that apoptosis is initiated by the intrinsic mitochondrial pathway through the release of caspase-dependent and -independent apoptogenic molecules. This study provides the first evidence that LGI1 controls neuronal cell survival, suggesting its role in the development of the nervous system in relation to the pathogenesis of neuroblastoma and ADLTE.  相似文献   

17.
Presenilin-1 (PS1), the major causative gene of familial Alzheimer disease, regulates neuronal differentiation and Notch signaling during early neural development. To investigate the role of PS1 in neuronal migration and cortical lamination of the postnatal brain, we circumvented the perinatal lethality of PS1-null mice by generating a conditional knockout (cKO) mouse in which PS1 inactivation is restricted to neural progenitor cells (NPCs) and NPC-derived neurons and glia. BrdU birthdating analysis revealed that many late-born neurons fail to migrate beyond the early-born neurons to arrive at their appropriate positions in the superficial layer, while the migration of the early-born neurons is largely normal. The migration defect of late-born neurons coincides with the progressive reduction of radial glia in PS1 cKO mice. In contrast to the premature loss of Cajal-Retzius (CR) neurons in PS1-null mice, generation and survival of CR neurons are unaffected in PS1 cKO mice. Furthermore, the number of proliferating meningeal cells, which have been shown to be important for the survival of CR neurons, is increased in PS1-null mice but not in PS1 cKO mice. These findings show a cell-autonomous role for PS1 in cortical lamination and radial glial development, and a non-cell-autonomous role for PS1 in CR neuron survival.  相似文献   

18.
A novel gene causing a mendelian audiogenic mouse epilepsy.   总被引:12,自引:0,他引:12  
Frings mice are a model of generalized epilepsy and have seizures in response to loud noises. This phenotype is due to the autosomal recessive inheritance of a single gene on mouse chromosome 13. Here we report the fine genetic and physical mapping of the locus. Sequencing of the region led to identification of a novel gene; mutant mice are homozygous for a single base pair deletion that leads to premature termination of the encoded protein. Interestingly, the mRNA levels of this gene in various tissues are so low that the cDNA has eluded detection by standard library screening approaches. Study of the MASS1 protein will lead to new insights into regulation of neuronal excitability and a new pathway through which dysfunction can lead to epilepsy.  相似文献   

19.
The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins) play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat) domain and a so-called epilepsy-associated or EPTP (epitempin) domain. Both domains are thought to function in protein–protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe) epilepsy) also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features). LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions.  相似文献   

20.
Cortical dysplasia is the most common etiology of intractable epilepsy. Both excitability changes in cortical neurons and neural network reconstitution play a role in cortical dysplasia epileptogenesis. Recent research shows that the axon initial segment, a subcompartment of the neuron important to the shaping of action potentials, adjusts its position in response to changes in input, which contributes to neuronal excitability and local circuit balance. It is unknown whether axon initial segment plasticity occurs in neurons involved in seizure susceptibility in cortical dysplasia. Here, we developed a “Carmustine”- “pilocarpine” rat model of cortical dysplasia and show that it exhibits a lower seizure threshold, as indicated by behavior studies and electroencephalogram monitoring. Using immunofluorescence, we measured the axon initial segment positions of deep L5 somatosensory neurons and show that it is positioned closer to the soma after acute seizure, and that this displacement is sustained in the chronic phase. We then show that Nifedipine has a dose-dependent protective effect against axon initial segment displacement and increased seizure susceptibility. These findings further our understanding of the pathophysiology of seizures in cortical dysplasia and suggests Nifedipine as a potential therapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号