首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
In a preceding paper (Briza, P., Winkler, G., Kalchhauser, H., and Breitenbach, M. (1986) J. Biol. Chem. 261, 4288-4294), we reported the presence of dityrosine in the outer layers of yeast ascospore walls. Both outer layers seen in electron micrographs of yeast ascospore walls are sporulation-specific. Here we show that the second of these two outer layers consists of chitosan. In intact spores, it is shielded from staining with primulin by the outermost layer. However, in purified spore walls, the second layer is brightly stained by primulin, and hydrolysates of such preparations contain about 10% glucosamine relative to spore wall dry weight. The spore wall material staining with primulin is resistant to chitinase, but readily degraded by treatment with HNO2. Acetylation prior to HNO2 treatment completely prevents its degradation. A partial acid hydrolysate of spore walls contains predominantly soluble poly-beta-(1,4)-glucosamine as determined by 13C NMR spectroscopy. By these criteria, the glucosamine polymer of yeast ascospore walls is chitosan. As spore walls treated with alkali lack the inner layers but contain chitosan and as chitosan is not exposed at the surface of the spore, we conclude that it is localized in the second outer layer of the spore wall.  相似文献   

2.
We have shown previously that the outer layers of yeast ascospore walls contain dityrosine and that this amino acid is a major component of the cross-linked peptides present in the spore wall (Briza, P., Winkler, G., Kalchhauser, H., and Breitenbach, M. (1986) J. Biol. Chem. 261, 4288-4294). We now present evidence that dityrosine is located in the outermost layer and that it is in the DL-configuration. Although the proteins (peptides) of the spore wall are insoluble, the macromolecule containing dityrosine can be solubilized by partial acid hydrolysis of spore walls. Analysis of this macromolecule indicates that it contains more than 50 mol% dityrosine and a very limited number of other amino acids. Interestingly, part of the dityrosine of spore walls is present in the DL-configuration. We speculate that not only the high degree of cross-links in the outermost layer but also the D-configuration of part of the alpha-C-atoms of dityrosine could contribute to the spores' resistance to lytic enzymes.  相似文献   

3.
The spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine. Though the synthesis and export pathways for dityrosine have been described, genes directly involved in dityrosine polymerization and incorporation into the spore wall have not been identified. A synthetic gene array approach to identify new genes involved in outer spore wall synthesis revealed an interconnected network influencing dityrosine assembly. This network is highly redundant both for genes of different activities that compensate for the loss of each other and for related genes of overlapping activity. Several of the genes in this network have paralogs in the yeast genome and deletion of entire paralog sets is sufficient to severely reduce dityrosine fluorescence. Solid-state NMR analysis of partially purified outer spore walls identifies a novel component in spore walls from wild type that is absent in some of the paralog set mutants. Localization of gene products identified in the screen reveals an unexpected role for lipid droplets in outer spore wall formation.  相似文献   

4.
The de novo formation of multilayered spore walls inside a diploid mother cell is a major landmark of sporulation in the yeast Saccharomyces cerevisiae. Synthesis of the dityrosine-rich outer spore wall takes place toward the end of this process. Bisformyl dityrosine, the major building block of the spore surface, is synthesized in a multistep process in the cytoplasm of the prospores, transported to the maturing wall, and polymerized into a highly cross-linked macromolecule on the spore surface. Here we present evidence that the sporulation-specific protein Dtr1p (encoded by YBR180w) plays an important role in spore wall synthesis by facilitating the translocation of bisformyl dityrosine through the prospore membrane. DTR1 was identified in a genome-wide screen for spore wall mutants. The null mutant accumulates unusually large amounts of bisformyl dityrosine in the cytoplasm and fails to efficiently incorporate this precursor into the spore surface. As a result, many mutant spores have aberrant surface structures. Dtr1p, a member of the poorly characterized DHA12 (drug:H+ antiporter with 12 predicted membrane spans) family, is localized in the prospore membrane throughout spore maturation. Transport by Dtr1p may not be restricted to its natural substrate, bisformyl dityrosine. When expressed in vegetative cells, Dtr1p renders these cells slightly more resistant against unrelated toxic compounds, such as antimalarial drugs and food-grade organic acid preservatives. Dtr1p is the first multidrug resistance protein of the major facilitator superfamily with an assigned physiological role in the yeast cell.  相似文献   

5.
The ascospores of Saccharomyces cerevisiae are surrounded by a complex wall that protects the spores from environmental stresses. The outermost layer of the spore wall is composed of a polymer that contains the cross-linked amino acid dityrosine. This dityrosine layer is important for stress resistance of the spore. This work reports that the dityrosine layer acts as a barrier blocking the diffusion of soluble proteins out of the spore wall into the cytoplasm of the ascus. Diffusion of a fluorescent protein out of the spore wall was used as an assay to screen for mutants affecting spore wall permeability. One of the genes identified in this screen, OSW3 (RRT12/YCR045c), encodes a subtilisin-family protease localized to the spore wall. Mutation of the active site serine of Osw3 results in spores with permeable walls, indicating that the catalytic activity of Osw3 is necessary for proper construction of the dityrosine layer. These results indicate that dityrosine promotes stress resistance by acting as a protective shell around the spore. OSW3 and other OSW genes identified in this screen are strong candidates to encode enzymes involved in assembly of this protective dityrosine coat.  相似文献   

6.
In this study, we present a nonhazardous biological method of producing chitosan beads using the budding yeast Saccharomyces cerevisiae. Yeast cells cultured under conditions of nutritional starvation cease vegetative growth and instead form spores. The spore wall has a multilaminar structure with the chitosan layer as the second outermost layer. Thus, removal of the outermost dityrosine layer by disruption of the DIT1 gene, which is required for dityrosine synthesis, leads to exposure of the chitosan layer at the spore surface. In this way, spores can be made to resemble chitosan beads. Chitosan has adsorptive features and can be used to remove heavy metals and negatively charged molecules from solution. Consistent with this practical application, we find that spores are capable of adsorbing heavy metals such as Cu2+, Cr3+, and Cd2+, and removal of the dityrosine layer further improves the adsorption. Removal of the chitosan layer decreases the adsorption, indicating that chitosan works as an adsorbent in the spores. Besides heavy metals, spores can also adsorb a negatively charged cholesterol derivative, taurocholic acid. Furthermore, chitosan is amenable to chemical modifications, and, consistent with this property, dit1Δ spores can serve as a carrier for immobilization of enzymes. Given that yeast spores are a natural product, our results demonstrate that they, and especially dit1Δ mutants, can be used as chitosan beads and used for multiple purposes.  相似文献   

7.
The (time-resolved) fluorescence properties of dityrosine in the outermost layer of the spore wall of Saccharomyces cerevisiae were investigated. Steady-state spectra revealed an emission maximum at 404 nm and a corresponding excitation maximum at 326 nm. The relative fluorescence quantum yield decreased with increasing proton concentration. The fluorescence decay of yeast spores was found to be nonexponential and differed pronouncedly from that of unbound dityrosine in water. Analysis of the spore decay recorded at lambda ex = 323 nm and lambda em = 404 nm by an exponential series (ESM) algorithm revealed a bimodal lifetime distribution with maxima centered at tau 1C = 0.5 ns and tau 2C = 2.6 ns. The relative amplitudes of the two distributions are shown to depend on the emission wavelength, indicating contributions from spectrally different dityrosine chromophores. On quenching the spore fluorescence with acrylamide, a downward curvature of the Stern-Volmer plot was obtained. A multitude of chromophores more or less shielded from solvent in the spore wall is proposed to account for the nonlinear quenching of the total spore fluorescence. Analysis of the fluorescence anisotropy decay revealed two rotational correlation times (phi 1 = 0.9 ns and phi 2 = 30.6 ns) or a bimodal distribution of rotational correlation times (centers at 0.7 ns and 40 ns) when the data were analyzed by the maximum entropy method (MEM). We present a model that accounts for the differences between unbound (aqueous) and bound (incorporated in the spore wall) dityrosine fluorescence. The main feature of the photophysical model for yeast spores is the presence of at least two species of dityrosine chromophores differing in their chemical environments. A hypothetical photobiological role of these fluorophores in the spore wall is discussed: the protection of the spore genome from mutagenic UV light.  相似文献   

8.
The ascopore wall of Saccharomyces cerevisiae was found to contain more protein, polymeric glucosamine, and beta-glucan than the vegetative cell wall, which was enriched in mannoprotein relative to ascospore walls. Tunicamycin inhibited sporulation, as judged by the absence of refractile ascospores visible by phase-contrast microscopy, but cells completed meiosis, as demonstrated by the presence of multinucleate asci. Such spores lacked the dense outer layer characteristic of normal spores. Thus, the tunicamycin effect was similar to that of glucosamine auxotrophy (W. L. Whelan and C. E. Ballou, J. Bacteriol. 124:1545-1557, 1975).  相似文献   

9.
R. Campbell 《Protoplasma》1973,78(1-2):69-80
Summary The croziers were formed from large multinucleate cells at the base of the hysterothecium. The diploid ascus had basal and apical vacuoles and there was prominant endoplasmic reticulum near the extending tip of the ascus. The spore delimiting membranes were continuous with the plasmalemma and possibly arose from it. The spore walls were formed between the two membranes. The ascus had a simple apical ring around a thinner region of the wall which became the pore through which the spores were released. Just before spore release the outer layer of the ascospore wall became vesiculated and eventually mucilagenous. The long clavate ascospores were released one at a time, stretching the neck of the ascus as they emerged.  相似文献   

10.
The ultrastructure of ascospore wall formation in the pyrenomycete Sordaria brevicollis was studied in developing asci at progressive time intervals. From early spore delimitation through final stage of maturation, the wall of the ascospore differentiated into four composite layers, the periascosporium the delineation ascosporium, the subascosproium, and the endoascosproium, While ascospores were at the hyaline stage of development,they possessed only the periascosporium and delineation ascosporium as their wall components. At about 7 to 8 days from the initiation of the cross, the spores developed a yellow color, and this coloration was always associated with the elaboration of the subascorsporium just internal to the ascosporium. Asthe spores continued to progressively darken in color, the subascosporium was seen to increase in complexity, electron density, and thickness. Soon after the formation of the subascosporium, the endoascosporium began to develop de novo and was, therefore, the last wall layer formed as the spore approached maturity.  相似文献   

11.
Summary In the alkane yeast Saccharomycopsis lipolytica (formerly: Candida lipolytica) the variability in the ascospore number is caused by the absence of a correlation between the meiotic divisions and spore wall formation. In four spored yeasts, after meiosis II, a spore wall is formed around each of the four nuclei produced by meiosis II. However, in the most frequently occurring two spored asci of S. lipolytica, the two nuclei are already enveloped by the spore wall after meiosis I due to a delay of meiosis II. This division takes place within the spore during the maturation of the ascus. In this case germination of the binucleate ascospore is not preceded by a mitosis. It follows that the cells of the new haploid clones are mononucleate. In the three spored asci, which occur rarely, only one nucleus is surrounded by a spore wall after meiosis I; the other nucleus undergoes meosis II before the onset of spore wall formation. The result is one binucleate and two mononucleate spores. In the one spored asci the two meiotic divisions occur within the young ascospore, i.e. spore wall formation starts immediately after development of the ascus. These cytological observations were substantiated by genetic data, which in addition confirmed the prediction that binucleate spores may be heterokaryotic. This occurs when there is a postreduction of at least one of the genes by which the parents of the cross differ. This also explains the high frequency of prototrophs in the progeny on non-allelic auxotrophs since random spore isolates are made without distinguishing between mono-and binucleate spores. The possibility of analysing offspring of binucleate spores by tetrad analysis is discussed. These findings enable us to understand the life cycle of S. lipolytica in detail and we are now in a position to start concerted breeding for strain improvement especially with respect to single cell protein production.  相似文献   

12.
细胞壁是酵母细胞区别于哺乳动物细胞的重要特征结构。酵母细胞壁的结构组成、合成、再生等与酵母自身繁殖及环境胁迫压力密切相关。目前,酵母孢子壁的形成机理、调控过程机制及孢子壁合成相关基因的功能尚未研究清楚。本文以酿酒酵母为例,简要描述酵母孢子壁的形成过程,重点阐述孢子壁甘露糖层、葡聚糖层、壳聚糖层和二酪氨酸层的结构组成及其合成相关基因的国内外研究进展,以期为抗真菌药物的新靶点研究提供参考。  相似文献   

13.
Rand TG  Miller JD 《Mycopathologia》2008,165(2):73-80
The purpose of this study was to evaluate the distribution of a 34 kD antigen isolated from S. chartarum sensu lato in spores and in the mouse lung 48 h after intra-tracheal instillation of spores by immuno-histochemistry. This antigen was localized in spore walls, primarily in the outer and inner wall layers and on the external wall surfaces with modest labelling observed in cytoplasm. Immuno-histochemistry revealed that in spore impacted mouse lung, antigen was again observed in spore walls, along the outside surface of the outer wall and in the intercellular space surrounding spores. In lung granulomas the labelled antigen formed a diffusate, some 2–3× the size of the long axis of spores, with highest concentrations nearest to spores. Collectively, these observations indicated that this protein not only displayed a high degree of specificity with respect to its location in spores and wall fragments, but also that it slowly diffuses into surrounding lungs.  相似文献   

14.
Summary Light in the blue and green bands of the spectrum inhibited ascospore formation in both Saccharomyces cerevisiae and S. carlsbergensis. Ascospores which were produced failed to stain with malachite green and mature spores formed in the dark lost their staining ability when exposed to light in these bands. It is thought that this is due to an alteration brought about in the molecular organization of the spore wall, so that the damaged walls become permeable to molecules of considerably greater size. Red light was without effect on S. cerevisiae, but stimulated sporulation in S. carlsbergensis. This response seemed to be strictly under the control of the yeast cell, and of a totally different nature from the injurious character of shorter wave lengths.  相似文献   

15.
Enzymatic removal of the cell wall induces vegetative Chlamydomonas reinhardtii cells to transcribe wall genes and synthesize new hydroxyproline-rich glycoproteins (HRGPs) related to the extensins found in higher plant cell walls. A cDNA expression library made from such induced cells was screened with antibodies to an oligopeptide containing the (SP)x repetitive domains found in Chlamydomonas wall proteins. One of the selected cDNAs encodes an (SP)x-rich polypeptide that also displays a repeated YGG motif. Ascorbate, a peroxidase inhibitor, and tyrosine derivatives were shown to inhibit insolubilization of both the vegetative and zygotic cell walls of Chlamydomonas, suggesting that oxidative cross-linking of tyrosines is occurring. Moreover, insolubilization of both walls was concomitant with a burst in H2O2 production and in extracellular peroxidase activity. Finally, both isodityrosine and dityrosine were found in hydrolysates of the insolubilized vegetative wall layer. We propose that the formation of tyrosine cross-links is essential to Chlamydomonas HRGP insolubilization.  相似文献   

16.
扁绒泡菌孢子形成过程超微结构   总被引:1,自引:0,他引:1  
李艳双  于玲  王晓丽  李玉 《菌物学报》2011,30(1):138-141
诱导扁绒泡菌显型原质团形成子实体并观察在形成过程中孢囊的超微结构,结果表明,全部原质团参入形成孢子及孢丝;孢子形成初期原质团聚缩使原生质密度加大,脂滴密度也增加;液泡联合形成液泡网体分割原质团,孢子及孢丝一同形成;相邻孢子初始形成的孢子壁可见吻合的突起和凹陷,这是孢子成熟后的表面纹饰部分;孢子壁随孢囊发育逐渐达到适宜位置,孢子壁由透明内层及电子密度较大的外层组成;随后可见外有疣突,内含脂滴的圆形孢子。  相似文献   

17.
Aplysia gonad lectin, isolated from the mollusc Aplysia depilans, was successfully conjugated to colloidal gold and used for ultrastructural detection of galacturonic acids in some pathogenic fungi. These sugar residues were found to occur in the fibrillar sheath surrounding hyphal cells of Ascocalyx abietina and in intravacuolar dense inclusions of this fungus spores. In hyphae and spores of Ophiostoma ulmi, galacturonic acids were detected mainly in the outermost wall layers. In contrast, these saccharides appeared associated with the innermost wall layers and especially the plasma membrane of Verticillium albo-atrum cells. Galacturonic acids were found to be absent in cells of Fusarium oxysporum f.sp. radicis-lycopersici and Candida albicans. These cytochemical data indicate therefore that a heterogeneity in wall composition exists between ascomycete fungi. The significance of the presence of galacturonic acids in the cell walls of certain fungi is still open to question.  相似文献   

18.
The purified red yeast cell wall lytic enzyme of Penicillium lilacinum No. 2093 has a potent saccharifying activity against cell walls, but the living cell lytic activity of it is considerably lower than that of the culture filtrate. Therefore, the living cell lytic factors in the culture filtrate were examined. The alkaline protease of Pen. lilacinum played an important role for living cell lysis. The synergistic effect on living cell lysis was also detected, when acid proteases from various origins were combined with the cell wall lytic enzyme. These results indicated that the protein layers of red yeast cell surface inhibited the action of a glycanase,cell wall lytic enzyme, and the protein molecule contributed to retain the rigid structure of the wall.  相似文献   

19.
In nature, yeasts are subject to predation by flies of the genus Drosophila. In response to nutritional starvation Saccharomyces cerevisiae differentiates into a dormant cell type, termed a spore, which is resistant to many types of environmental stress. The stress resistance of the spore is due primarily to a spore wall that is more elaborate than the vegetative cell wall. We report here that S. cerevisiae spores survive passage through the gut of Drosophila melanogaster. Constituents of the spore wall that distinguish it from the vegetative cell wall are necessary for this resistance. Ascospores of the distantly related yeast Schizosaccharomyces pombe also display resistance to digestion by D. melanogaster. These results suggest that the primary function of the yeast ascospore is as a cell type specialized for dispersion by insect vectors.  相似文献   

20.
Laminae of Adiantum raddianum Presl., a fern belonging to the family Pteridaceae, are characterised by the presence of epidermal fibre-like cells under the vascular bundles. These cells were thought to contain silica bodies, but their thickened walls leave no space for intracellular silica suggesting it may actually be deposited within their walls. Using advanced electron microscopy in conjunction with energy dispersive X-ray microanalysis we showed the presence of silica in the cell walls of the fibre-like idioblasts. However, it was specifically localised to the outer layers of the periclinal wall facing the leaf surface, with the thick secondary wall being devoid of silica. Immunocytochemical experiments were performed to ascertain the respective localisation of silica deposition and glycan polymers. Epitopes characteristic for pectic homogalacturonan and the hemicelluloses xyloglucan and mannan were detected in most epidermal walls, including the silica-rich cell wall layers. The monoclonal antibody, LM6, raised against pectic arabinan, labelled the silica-rich primary wall of the epidermal fibre-like cells and the guard cell walls, which were also shown to contain silica. We hypothesise that the silicified outer wall layers of the epidermal fibre-like cells support the lamina during cell expansion prior to secondary wall formation. This implies that silicification does not impede cell elongation. Although our results suggest that pectic arabinan may be implicated in silica deposition, further detailed analyses are needed to confirm this. The combinatorial approach presented here, which allows correlative screening and in situ localisation of silicon and cell wall polysaccharide distribution, shows great potential for future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号