首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The decomposition of organic hydroperoxides as catalyzed by chloroperoxidase was investigated with electron spin resonance (ESR) spectroscopy. Tertiary peroxyl radicals were directly detected by ESR from incubations of tert-butyl hydroperoxide or cumene hydroperoxide with chloroperoxidase at pH 6.4. Peroxyl, alkoxyl, and carbon-centered free radicals from tertiary hydroperoxide/chloroperoxidase systems were successfully trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide, whereas alkoxyl radicals were not detected in the ethyl hydroperoxide/chloroperoxidase system. The carbon-centered free radicals were further characterized by spin-trapping studies with tert-nitrosobutane. Oxygen evolution measured by a Clark oxygen electrode was detected for all the hydroperoxide/chloroperoxidase systems. The classical peroxidase mechanism is proposed to describe the formation of peroxyl radicals. In the case of tertiary peroxyl radicals, their subsequent self-reactions result in the formation of alkoxyl free radicals and molecular oxygen. beta-Scission and internal hydrogen atom transfer reactions of the alkoxyl free radicals lead to the formation of various carbon-centered free radicals. In the case of the primary ethyl peroxyl radicals, decay through the Russell pathway forms molecular oxygen.  相似文献   

2.
The study of the important role of peroxyl radicals in biological systems is limited by their difficult detection with direct electron spin resonance (ESR). Many ESR spectra were assigned to 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/peroxyl radical adducts based only on the close similarity of their ESR spectra to that of DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the radical adduct from DMPO/superoxide radical adduct. Later, the spin-trapping literature reported that DMPO/peroxyl radical adducts have virtually the same hyperfine coupling constants as synthesized alkoxyl radical adducts, raising the issue of the correct assignment of peroxyl radical adducts. However, using 17O-isotope labelling, the methylperoxyl and methoxyl radical adducts should be distinguishable. We have reinvestigated the spin trapping of the methylperoxyl radical. The methylperoxyl radical was generated in aerobic solution with 17O-molecular oxygen either in a Fenton system with dimethylsulfoxide or in a chloroperoxidase system with tert-butyl hydroperoxide. Two different spin traps, DMPO and 2,2,4-trimethyl-2H-imidazole-1-oxide (TMIO), were used to trap methylperoxyl radical. 17O-labelled methanol was used to synthesize methoxyl radical adducts by nucleophylic addition. It was shown that the 17O hyperfine coupling constants of radical adducts formed in methylperoxyl radical-generating systems are identical to that of the methoxyl radical adduct. Therefore, methylperoxyl radical-producing systems form detectable methoxyl radical adduct, but not detectable methylperoxyl radical adducts at room temperature. One of the possible mechanisms is the decomposition of peroxyl radical adduct with the formation of secondary alkoxyl radical adduct. These results allow us to reinterpret previously published data reporting detection of peroxyl radical adducts. We suggest that detection of 17O-alkoxyl radical adduct from 17O-labelled molecular oxygen can be used as indirect evidence for peroxyl radical generation.  相似文献   

3.
We studied the mechanism of formation of oxygen radicals during ferrous ion-induced decomposition of linoleic acid hydroperoxide using the spin trapping and chemiluminescence methods. The formation of the superoxide anion (O2*-) was verified in the present study. The hydroxyl radical is also generated through Fenton type decomposition of hydrogen peroxide produced on disproportionation of O2*-. A carbon-centered radical was detected using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) as a spin trap. Alkoxyl radical formation is essential for the conversion of linoleic acid hydroperoxide into the peroxyl radical by ferrous ion. It is likely that the alkoxyl radical [R1CH(O*)R2] is converted into the hydroxylcarbon radical [R1C*(OH)R2] in water, and that this carbon radical reacts with oxygen to give the alpha-hydroxyperoxyl radical [R1R2C(OH)OO*], which decomposes into the carbocation [R1C+(OH)R2] and O2*-.  相似文献   

4.
Spin trapping using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to detect and distinguish between the carbon-centred, alkoxyl, and peroxyl radicals produced during the photolytic decomposition of hydroperoxides. Photolysis of tert-butyl and cumene hydroperoxides, and peroxidized fatty acids, in toluene, with low levels of u.v. light, is shown to lead to the initial production of alkoxyl radicals by homolysis of the oxygen-oxygen bond. Subsequent reaction of these radicals with excess hydroperoxide leads, by hydrogen abstraction, to the production of peroxyl radicals that can be detected as their corresponding adducts with the spin trap. Subsequent breakdown of these adducts produces alkoxyl radicals and a further species that is believed to be the oxidized spin-trap radical 5,5-dimethyl-1-pyrrolidone-2-oxyl. No evidence was obtained at low hydroperoxide concentrations, with either the cumene or lipid alkoxyl radicals, for the occurrence of beta-scission reactions; the production of low levels of carbon-centred radicals is believed to be due to the alternative reactions of hydrogen abstraction, ring closure, and/or 1,2 hydrogen shifts. Analogous experiments with 3,3,5,5-tetramethyl-1-pyrroline N-oxide (TMPO) led only to the trapping of alkoxyl radicals with no evidence for peroxyl radical adducts, this is presumably due to a decreased rate of radical addition because of increased steric hindrance.  相似文献   

5.
We have demonstrated with electron paramagnetic resonance (EPR) that organic hydroperoxides are decomposed to free radicals by both human polymorphonuclear leukocytes (PMNs) and purified myeloperoxidase. When tert-butyl hydroperoxide was incubated with either PMNs or purified myeloperoxidase, peroxyl, alkoxyl, and alkyl radicals were trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In the case of ethyl hydroperoxide, DMPO radical adducts of peroxyl and alkyl (identified as alpha-hydroxyethyl when trapped by tert-nitrosobutane) radicals were detected. Radical adduct formation was inhibited when azide was added to the incubation mixture. Myeloperoxidase-deficient PMNs produced DMPO radical adduct intensities at only about 20-30% of that of normal PMNs. Our studies suggest that myeloperoxidase in PMNs is primarily responsible for the decomposition of organic hydroperoxides to free radicals. The finding of the free radical formation derived from organic hydroperoxides by PMNs may be related to the cytotoxicity of this class of compounds.  相似文献   

6.
Sun S  Bao Z  Ma H  Zhang D  Zheng X 《Biochemistry》2007,46(22):6668-6673
Generation of singlet oxygen is first investigated in the decomposition of polyunsaturated lipid peroxide, alpha-linolenic acid hydroperoxide (LAOOH), by heme-proteins such as cytochrome c and lactoperoxidase. Chemiluminescence and electron spin resonance methods are used to confirm the singlet oxygen generation and quantify its yield. Decomposition products of LAOOH are characterized by HPLC-ESI-MS, which suggests that singlet oxygen is produced via the decomposition of a linear tetraoxide intermediate (Russell's mechanism). Free radicals formed in the decomposition are also identified by the electron spin resonance technique, and the results show that peroxyl, alkyl, and epoxyalkyl radicals are involved. The changes of cytochrome c and lactoperoxidase in the reaction are monitored by UV-visible spectroscopy, revealing the action of a monoelectronic and two-electronic oxidation for cytochrome c and lactoperoxidase, respectively. These results suggest that cytochrome c causes a homolytic reaction of LAOOH, generating alkoxyl radical and then peroxyl radical, which in turn releases singlet oxygen following the Russell mechanism, whereas lactoperoxidase leads to a heterolytic reaction of LAOOH, and the resulting ferryl porphyryl radical of lactoperoxidase abstracts the hydrogen atom from LAOOH to give peroxyl radical and then singlet oxygen. This observation would be important for a better understanding of the damage mechanism of cell membrane or lipoprotein by singlet oxygen and various radicals generated in the peroxidation and decomposition of lipids induced by heme-proteins.  相似文献   

7.
To clarify the nature of cytocidal molecular species among the radicals generated in the iron-catalyzed reactions of peroxides (ROOH), we examined the cytocidal effects of these radicals against gram-positive and gram-negative bacteria in the presence or absence of various radical scavengers. Three organic peroxides, t-butyl hydroperoxide (t-BuOOH), methyl ethyl ketone peroxide (MEKOOH), and cumene hydroperoxide, were used. Each radical generated from these peroxides was identified and quantitated by electron spin resonance (ESR) spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The major cytotoxic radical species generated in the mixtures of various peroxides and heme iron, especially methemoglobin, metmyoglobin, or hemin, was the alkyl peroxyl radical (ROO.). Strong bactericidal action against gram-positive bacteria was observed in the peroxide-heme iron system, especially in the case of t-BuOOH and MEKOOH. Killing curves for gram-positive bacteria showed an initial lag period, which may indicate the multihit/multitarget kinetics of cell killing. When the diethylenetriamine pentaacetic acid (DTPA)-Fe2+ complex was used as a catalyst for decomposition of various peroxides, alkyl, alkoxyl, and alkyl peroxyl radicals were identified by spin-trapping analysis. However, study of the time course of alkyl peroxyl radical production in the DTPA-Fe2+ complex system revealed that radical species generated in this system were very short lived: a maximal level was achieved within 1 min and then declined sharply, and no bactericidal activity was observed after 10 min. In contrast, the alkyl peroxyl radical level generated by the organic peroxide-heme iron system remained high for 30 min or longer. The generation of alkyl peroxyl radicals quantified by ESR correlated quite well with the bactericidal effect of the system of peroxide plus iron. In addition, bactericidal activity was completely inhibited by the addition of the spin trap DMPO, as well as of other various radical scavengers (alpha-tocopherol and L-ascorbic acid), into the peroxide-heme iron system, but this effect was not observed with superoxide dismutase, beta-carotene, dimethyl sulfoxide, diphenylamine, or butylated hydroxyltoluene. In view of these results, it is assumed that alkyl peroxyl radicals are the potent molecular species that are cytotoxic against bacteria, whereas alkoxyl radicals (RO.) generated in this system do not affect bacterial viability.  相似文献   

8.
Direct electron spin resonance was used to detect tert-alkylperoxyl radicals generated by hematin and the corresponding hydroperoxides at near-physiological pH values. The spin-trapping method was necessary to detect the less persistent primary ethylperoxyl radical. Under a nitrogen atmosphere, the electron spin resonance signal of the tert-alkylperoxyl radicals decreased, and the ethylperoxyl spin-adduct concentration did not change. Concomitant studies, using a Clark oxygen electrode, show that oxygen was consumed by the hematin-tert-alkyl hydroperoxide systems, but was released by the hematin-ethyl hydroperoxide reaction. Thus, molecular oxygen seems to play a subsidiary role in the hematin-catalyzed decomposition of hydroperoxides. Based on the electron spin resonance and oxygen electrode results, a mechanism for the continuous production of the peroxyl free radicals is proposed for hematin/hydroperoxide systems. The present spectroscopic methodology can be used to search for peroxyl free radical formation by hemoprotein/hydroperoxide systems.  相似文献   

9.
We have demonstrated that hypochlorite (HOCI/OCl-) and hypobromite (HOBr/OBr-) can react with tert-butyl hydroperoxide with close rate constants (k(HOCl) = 10,8 M(-1) x s(1); k(HOBr) = 8,9 M(-1) x (s(-1)). By means of the spin trap 4-pyridyl-1-oxide-N-tert-butyl nitron we have found that both reactions proceed through decomposition of tert-butyl hydroperoxide and generation of tert-butyl peroxyl (OOC(CH3)3) and tert-butoxyl (OC(CH3)3) radicals, the ratio of their the concentrations being dependent on the concentration of tert-butyl hydroperoxide. Thus, hypobromite, similar to hypochlorite, is a precursor of free radicals produced in the reaction with organic hydroperoxides. This reaction can be of great importance in the intensification of free radical processes, namely, in lipid peroxidation at the stage of chain branching.  相似文献   

10.
ESR spin trapping using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to directly detect alkoxyl radicals (with hyperfine coupling constants aN 1.488, aH 1.600 mT and aN 1.488, aH 1.504 mT for the tBuO. and PhC(CH3)2O. adducts, respectively) and peroxyl radicals (aN 1.448, aH 1.088, aH 0.130 mT and aN 1.456, aH 1.064, aH 0.128 mT for the tBuOO. and PhC(CH3)2OO. adducts, respectively) produced from t-butyl or cumene hydroperoxides by a variety of heme-containing substances (purified cytochrome P-450, metmyoglobin, oxyhemoglobin, methemoglobin, cytochrome c, catalase, horseradish peroxidase) and the model compound hematin. The observed species exhibit a complicated dependence on reagent concentrations and time, with maximum concentrations of the peroxyl radical adducts being observed immediately after mixing of the hydroperoxide with low concentrations of the heme-compound. Experiments with inhibitors (CN-, N3-, CO, metyrapone and imidazole) suggest that the major mechanism of peroxyl radical production involves high-valence-state iron complexes in a reaction analogous to the classical peroxidase pathway. The production of alkoxyl radicals is shown to arise mainly from the breakdown of peroxyl radical spin adducts, with direct production from the hydroperoxide being a relatively minor process.  相似文献   

11.
The organic hydroperoxides tert-butyl hydroperoxide and cumene hydroperoxide are tumor promoters in the skin of SENCAR mice, and this activity is presumed to be mediated through the activation of the hydroperoxides to free radical species. In this study we have assessed the generation of free radicals from organic hydroperoxides in the target cell (the murine basal keratinocyte) using electron spin resonance. Incubation of primary isolates of keratinocytes from SENCAR mice in the presence of spin traps (5,5-dimethyl-1-pyrroline N-oxide or 2-methyl-2-nitrosopropane) and either tert-butyl hydroperoxide or cumene hydroperoxide resulted in the generation and detection of radical adducts of these spin traps. tert-Butyl alkoxyl and alkyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were detected shortly after addition of tert-butyl hydroperoxide, whereas only alkyl radical adducts were observed with cumene hydroperoxide. Spin trapping of the alkyl radicals with 2-methyl-2-nitrosopropane led to the identification of methyl and ethyl radical adducts following both tert-butyl hydroperoxide and cumene hydroperoxide exposures. Prior heating of the cells to 100 degrees C for 30 min prevented radical formation. The radical generating capacity of subcellular fractions of these epidermal cells was examined using 5,5-dimethyl-1-pyrroline N-oxide and cumene hydroperoxide, and this activity was confined to the 105,000 X g supernatant fraction.  相似文献   

12.
Hydroperoxide-induced radical production in liver mitochondria   总被引:2,自引:0,他引:2  
When isolated rat liver mitochondria are treated with tert-butyl hydroperoxide in the presence of the spin trap 5,5-dimethyl-1-pyrroline-N-oxide, a six-line ESR signal is observed with parameters characteristic of a carbon-centered radical. The radical is shown to be CH3. using 2-methyl-2-nitrosopropane as the spin trap. Inhibition of radical production by EDTA and N-ethylmaleimide provides evidence for participation by metals and reduced sulfhydryl groups in the radical-generating reaction. It is proposed that radicals are formed through the reaction between a reducing agent, a metal and the hydroperoxide.  相似文献   

13.
Fe(III)-bleomycin catalyzes the decomposition of 13-hydroperoxylinoleic acid and of 15-hydroperoxyarachidonic acid to produce small quantities of singlet oxygen. No singlet oxygen is produced when hydrogen peroxide, ethyl hydroperoxide, cumene hydroperoxide, and t-butyl hydroperoxide are used as substrates. The heme-containing catalysts, methemoglobin and hematin, have identical hydroperoxide substrate requirements for singlet oxygen production. The hydroperoxide requirements for singlet oxygen production correlate with those reported by Dix et al. (Dix, T.A., Fontana, R., Panthani, A., and Marnett, L.J. (1985) J. Biol. Chem. 260, 5358-5365) for the production of peroxyl radicals in the hematin-catalyzed decomposition of hydroperoxides. The bimolecular reaction of peroxyl radicals is a plausible reaction mechanism for the singlet oxygen production in the systems studied.  相似文献   

14.
The generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of several oligopeptides was investigated by electron spin resonance (ESR) utilizing 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap. Incubation of Ni2+ with cumene hydroperoxide or t-butyl hydroperoxide did not generate any detectable free radical. In the presence of glycylglycylhistidine (GlyGlyHis), however, Ni2+ generated cumene peroxyl (ROO.) radical from cumene hydroperoxide, with the free radical generation reaching its saturation level within about 3 min. The reaction was first order with respect to both cumene hydroperoxide and Ni2+. Similar results were obtained using t-butyl hydroperoxide, but the yield of t-butyl peroxyl radical generation was about 7-fold lower. Other histidine-containing oligopeptides such as beta-alanyl-L-histidine (carnosine), gamma-aminobutyryl-L-histidine (homocarnosine), and beta-alanyl-3-methyl-L-histidine (anserine) caused the generation of both cumene alkyl (R.) and cumene alkoxyl (RO.) radicals in the reaction of Ni2+ with cumene hydroperoxide. Similar results were obtained using t-butyl hydroperoxide. Glutathione also caused generation of R. and RO. radicals in the reaction of Ni2+ with cumene hydroperoxide but the yield was approximately 25-fold greater than that produced by the histidine-containing peptides, except GlyGlyHis. The ratio of DMPO/R. and DMPO/RO. produced with glutathione and cumene hydroperoxide was approximately 3:1. Essentially the same results were obtained using t-butyl hydroperoxide except that the ratio of DMPO/R. to DMPO/RO. was approximately 1:1. The free radical generation from cumene hydroperoxide reached its saturation level almost instantaneously while in the case of t-butyl hydroperoxide, the saturation level was reached in about 3 min. In the presence of oxidized glutathione, the Ni2+/cumene hydroperoxide system caused DMPO/.OH generation from DMPO without forming free hydroxyl radical. Since glutathione, carnosine, homocarnosine, and anserine are considered to be cellular antioxidants, the present work suggests that instead of protecting against oxidative damage, these oligopeptides may facilitate the Ni(2+)-mediated free radical generation and thus may participate in the mechanism(s) of Ni2+ toxicity and carcinogenicity.  相似文献   

15.
Studies of the oxygenation of linoleic acid by soybean lipoxygenase utilizing electron spin resonance spectroscopy and oxygen uptake have been undertaken. The spin trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN) was included in the lipoxygenase system to capture short-lived free radicals. Correlation of radical adduct formation rates with oxygen uptake studies indicated that the major portion of radical adduct formation occurred when the system was nearly anaerobic. Incubations containing [17O]oxygen with nuclear spin of 5/2 did not have additional ESR lines as would be expected if an oxygen-centered 4-POBN-lipid peroxyl radical adduct were formed indicating that the trapped radical must be reassigned as a carbon-centered species. To establish the presence of [17O2]oxygen in our incubations, a portion of the gas from the lipoxygenase/linoleate experiments was used to prepare the 4-POBN-superoxide radical adduct utilizing a superoxide producing microsomal/paraquat/NADPH system.  相似文献   

16.
It was shown with the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone that myeloperoxidase (MPO) in the presence of its substrates H2O2 and Cl- as well as activated neutrophils destroy tert-butyl hydroperoxide producing two adducts of O-centered radicals which were identified as peroxyl and alcoxyl radicals. Inhibitory analysis performed with traps of hypochlorite (taurine and methionine), free radical scavengers (2,6-di-tret-butyl-4-methylphenol and mannitol), and MPO inhibitors (salicylhydroxamic acid and 4-aminobenzoic acid hydrazide) revealed that the destruction of the hydroperoxide group in the presence of isolated MPO or activated neutrophils was directly caused by the activity of MPO: some radical intermediates appeared as a result of the chlorination cycle of MPO at the stage of hypochlorite generation, whereas the other radicals were produced independently of hypochlorite, presumably with involvement of the peroxidase cycle of MPO. The data suggest that the activated neutrophils located in the inflammatory foci and secreting MPO into the extracellular space can convert hydroperoxides into free radicals initiating lipid peroxidation and other free radical reactions and, thus, promoting destruction of protein-lipid complexes (biological membranes, blood lipoproteins, etc.).  相似文献   

17.
Enzyme-bound pentadienyl and peroxyl radicals in purple lipoxygenase   总被引:1,自引:0,他引:1  
M J Nelson  S P Seitz  R A Cowling 《Biochemistry》1990,29(29):6897-6903
Samples of purple lipoxygenase prepared by addition of either 13-hydroperoxy-9,11-octadecadienoic acid or linoleic acid and oxygen to ferric lipoxygenase contain pentadienyl and/or peroxyl radicals. The radicals are identified by the g values and hyperfine splitting parameters of natural abundance and isotopically enriched samples. The line shapes of their EPR spectra suggest the radicals are conformationally constrained when compared to spectra of the same radicals generated in frozen linoleic acid. Further, the EPR spectra are unusually difficult to saturate. The radicals are stable in buffered aqueous solution at 4 degrees C for several minutes. All of this implies that these species are bound to the enzyme, possibly in proximity to the iron. Only peroxyl radical is seen when the purple enzyme is generated with either hydroperoxide or linoleic acid in O2-saturated solutions. Addition of natural abundance hydroperoxide under 17O-enriched O2 leads to the 17O-enriched peroxyl radical, while the opposite labeling results in the natural abundance peroxyl radical, demonstrating the exchange of oxygen. Both radicals are detected in samples of purple lipoxygenase prepared with either linoleic acid or hydroperoxide under air. Addition of the hydroperoxide in the absence of oxygen favors the pentadienyl radical. We propose that addition of either linoleic acid or hydroperoxide to ferric lipoxygenase leads to multiple mechanistically connected enzyme complexes, including those with (hydro)peroxide, peroxide, peroxyl radical, pentadienyl radical, and linoleic acid bound. This hypothesis is essentially identical with the proposed radical mechanism of oxygenation of polyunsaturated fatty acids by lipoxygenase.  相似文献   

18.
beta-Alkannin (shikonin), a compound isolated from the root of Lithospermum erythrorhizon Siebold Zucc., has been used as a purple dye in ancient Japan and is known to exert an anti-inflammatory activity. This study aimed to understand the biological activity in terms of physico-chemical characteristics of beta-alkannin. Several physico-chemical properties including proton dissociation constants, half-wave potentials and molecular orbital energy of beta-alkannin were elucidated. This compound shows highly efficient antioxidative activities against several types of reactive oxygen species (ROS), such as singlet oxygen ((1)O2). superoxide anion radical (.O2), hydroxyl radical (.OH) and tert-butyl peroxyl radical (BuOO.) as well as iron-dependent microsomal lipid peroxidation. During the reactions of beta-alkannin with 1O2, .O2- and BuOO., intermediate organic radicals due to beta-alkannin were detectable by ESR spectrometry. Compared with the radicals due to naphthazarin, the structural skeleton of beta-alkannin, the beta-alkannin radical observed as an intermediate in the reactions with (1)O2, and .O2- was concluded to be a semiquinone radical. On the other hand, during the reactions of beta-alkannin and naphthazarin with BuOO., ESR spectra different from the semiquinone radical were observed, and proposed to result from the abstraction of hydrogen atoms from phenolic hydroxyl groups of beta-alkannin by BuOO.. Based on the ROS-scavenging abilities of beta-alkannin, the compound was concluded to react directly with ROS and exhibits antioxidative activity, which in turn exerts anti-inflammatory activity.  相似文献   

19.
R Labeque  L J Marnett 《Biochemistry》1988,27(18):7060-7070
Reaction of 10-hydroperoxyoctadec-8-enoic acid (10-OOH-18:1) (50 microM) with hematin (0.5 microM) in sodium phosphate buffer containing Tween 20 (200 microM) generates 10-oxooctadec-8-enoic acid, 10-oxodec-8-enoic acid (10-oxo-10:1), and 10-hydroxyoctadec-8-enoic acid in relative yields of 79, 4, and 17%, respectively. The product profile and relative distribution are unaffected by 1 mM butylated hydroxyanisole. Approximately 5% of the hydroperoxide isomerizes from the 10- to the 8-position. 10-Oxo-10:1 most likely arises via beta-scission of an intermediate alkoxyl radical to the aldehyde and the n-octyl radical. To test this, 10-hydroperoxyoctadeca-8,12-dienoic acid was reacted with hematin under identical conditions. 10-Oxooctadeca-8,12-dienoic acid, 10-oxodec-8-enoic acid, and 10-hydroxyoctadeca-8,12-dienoic acid are formed in relative yields of 50, 45, and 5%, respectively. The product ratios are constant with time and hydroperoxide to catalyst ratio and unaffected by inclusion of phenolic antioxidants. The higher yield of 10-oxo-10:1 from 10-OOH-18:2 compared to 10-OOH-18:1 is due to the higher rate of beta-scission of the intermediate alkoxyl radical from the former to the resonance-stabilized octenyl radical. Two products of reaction of the 2-octenyl radical with O2, octenal and octenol, were detected in 10% yield relative to 10-oxo-10:1. Inclusion of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP-7,8-diol) led to epoxidation by both 10-OOH-18:1 and 10-OOH-18:2. Studies with isotopically labeled hydroperoxide or O2 indicated approximately 65% of the epoxide oxygen was derived from O2 and 35% from hydroperoxide oxygen, consistent with the involvement of peroxyl free radicals as the oxidizing agents. The available evidence indicates that hematin reduces the fatty acid hydroperoxides homolytically to alkoxyl radicals that are oxidized to ketones, reduced to alcohols, or undergo beta-scission to aldehydes. Carbon radicals generated during these reactions couple to O2, generating peroxyl free radicals that epoxidize BP-7,8-diol. The smaller percentage of epoxidation that results from hydroperoxide oxygen may arise from oxidation of the hydroperoxide group to peroxyl radicals or from heterolytic cleavage of the hydroperoxide to alcohol and an iron-oxo complex.  相似文献   

20.
The oxidation of N-substituted aromatic amines by horseradish peroxidase   总被引:1,自引:0,他引:1  
The mechanism of N-dealkylation by peroxidases of the Ca2+ indicator quin2 and analogs was investigated and compared with the mechanism of N-dealkylation of some N-methyl-substituted aromatic amines. Nitrogen-centered cation radicals were detected by ESR spectroscopy for all the compounds studied. Further oxidation of the nitrogen-centered cation radicals, however, was dependent upon the structure of the radical formed. In the case of quin2 and analogs, a carbon-centered radical could be detected using the spin trap 5,5-dimethyl-1-pyrroline N-oxide. By using the spin trap 2-methyl-2-nitrosopropane (tert-nitrosobutane), it was determined that the carbon-centered radical was formed due to loss of a carboxylic acid group. This indicated that bond breakage most likely occurred through a rearrangement reaction. Furthermore, extensive oxygen consumption was detected, which was in agreement with the formation of carbon-centered radicals, as they avidly react with molecular oxygen. Thus, reaction of the carbon-centered radical with oxygen most likely led to the formation of a peroxyl radical. The peroxyl radical decomposed into superoxide that was spin trapped by 5,5-dimethyl-1-pyrroline N-oxide and an unstable iminium cation. The iminium cation would subsequently hydrolyze to the monomethyl amine and formaldehyde. In the case of N-methyl-substituted aromatic amines, carbon-centered radicals were not detected during the peroxidase-catalyzed oxidation of these compounds. Thus, rearrangement of the nitrogen-centered radical did not occur. Furthermore, little or no oxygen consumption was detected, whereas formaldehyde was formed in all cases. These results indicated that the N-methyl-substituted amines were oxidized by a mechanism different from the mechanism found for quin2 and analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号