首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of cytochrome P4501A (CYP1A1) enzyme activity is one of the best-studied direct effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds and has been shown to be a sensitive biomarker of exposure to polycyclic aromatic hydrocarbons (PAH) in different experimental animal species as well as in humans. TCDD has also been shown to modulate cytokine gene expression in human keratinocytes, including IL-1, TGF- and TFG-2. In the present studies, the aim was to determine whether different cellular targets of human origin differed in susceptibility to TCDD as measured by CYP1A1 activity and mRNA expression, and whether cytokine gene induction/suppression correlated with TCDD susceptibility. Human airway epithelial cells, alveolar macrophages (AM), peripheral blood monocytes and lymphocytes (PBL) were exposed to 10-10–10-7 mol/L TCDD. CYP1A1 enzyme activity was determined by ethoxyresorufin-O-deethylase (EROD) activity, mRNA expression of CYP1A1 was measured by semiquantitative PCR assay. The secretion and/or gene expression of specific cytokines, including IL-6, IL-8, and IL-1 were also examined. Overall, there was a clear correlation between TCDD-induced enzyme activity and CYP1A1 mRNA levels, which were dose-dependently increased in the bronchoepithelial cells and PBL. The human airway epithelial cells (BEAS-S6 cell line and primary cells) appeared to be the most inducible cellular target, with up to 50-fold increases at 10-8 mol/L TCDD with an EC50 of 3×10-11 mol/L TCDD. The pokeweed mitogen-activated peripheral blood lymphocytes revealed approximately 5-fold less capacity in CYP1A1 activity, with high interindividual variabilities (EC50 3×10-9 mol/L TCDD). In contrast, CYP1A1 enzyme activity in both AM and purified peripheral blood monocytes, which were costimulated with LPS and/or GM-CSF, could not be detected. CYP1A1 mRNA levels, however, were detectable and only marginally enhanced in response to TCDD. The ability of all these cells to express and produce the proinflammatory cytokines IL-6 and IL-8 was neither enhanced nor impaired by TCDD. These results indicate that cell types found in human lung and peripheral blood vary in susceptibility to TCDD, with the lung epithelium being highly susceptible and the alveolar macrophage being nonsusceptible. However, expression and production of specific cytokines such as IL-6 and IL-8, which may potentiate inflammatory processes and/or work as mitogens, does not appear to be influenced by TCDD.  相似文献   

2.
3.
This study aimed to clarify the effects of single and repeated administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the activities or expression of some metabolic enzymes of retinoids and the influence of supplemental vitamin A on changed vitamin A homeostasis by TCDD. In Experiment I, the mice were given a single oral dose of 40 mug TCDD/kg body weight, with or without continuous administration of 2,500 IU vitamin A/kg body weight/day, and were killed on day 1, 3, 7, 14, and 28. In Experiment II, the mice were daily given 0.1 microg TCDD/kg body weight, with or without supplemental 2,000 IU vitamin A/kg body weight, and were killed on day 14, 28, and 42. In both experiments, TCDD significantly decreased the hepatic all-trans-retinol level and increased the hepatic all-trans-retinoic acid (RA) content, increased the mRNA and enzymatic activities of retinal oxidase. In TCDD + vitamin A mice, the all-trans retinol content was significantly higher, and the retinal oxidase mRNA was significantly lower on day 3 or 7 in Experiment I and on day 14 in Experiment II, compared to TCDD-treated mice. The induction of the retinal oxidase may contribute to the decrease in hepatic all-trans-retinol level and the increase in hepatic all-trans-RA caused by TCDD. Supplemental vitamin A might decelerate the effect of TCDD on retinal oxidase mRNA.  相似文献   

4.
We studied the mechanism of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the chick embryo, which is an organism highly sensitive to TCDD. TCDD was injected into egg yolks prior to embryogenesis, and eggs were incubated for 12 or 18 days. In TCDD-exposed embryos, we observed increased heart wet weight and change in the color of the liver, with abnormal fatty vesicle formation. To determine whether these effects were mediated by the aryl hydrocarbon receptor (AhR), we examined expression levels of AhR, CYP1A4, and CYP1A5. AhR was expressed continuously in the heart and liver during embryogenesis, whereas induction of CYP1A4 and CYP1A5 by TCDD was detected only in the liver. In situ hybridization study of tissue sections revealed induction of CYP1A4 in the abnormal liver tissue in which color change was not observed. To determine whether these different responses to TCDD depended on the cell type, primary cultures of chick hepatocytes and cardiac myocytes were established and 7-ethoxyresorufin-O-deethylase (EROD) activity was measured. Induction of EROD activity following exposure to TCDD was detected in hepatocytes but not in cardiac myocytes. Although the heart is a principal target organ for TCDD toxicity and AhR is expressed throughout embryogenesis, induction of CYP1A was not observed in the chick heart. Thus, we conclude that defects in the heart induced by exposure to TCDD occur via a different pathway than that occurring in the liver.  相似文献   

5.
We report here a novel observation that 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) induced predominantly cytochrome P4501A1 (CYP1A1) in rat hepatocytes and predominantly CYP1A2 in human hepatocytes. As part of our research program to evaluate species-differences in response to CYP inducers, we studied the effects of TCDD on CYP1A activity, protein, and gene expression in primary cultures of rat and human hepatocytes. TCDD was found to induce CYP1A activity, measured as ethoxyresorufin-O-deethylase (EROD) activity, in both rat and human hepatocytes. TCDD induction of EROD activity in human hepatocytes (2-5 fold of concurrent solvent control), was significantly lower than that found in rat hepatocytes ( 20-fold of concurrent solvent control). Two structural analogs of TCDD, 2,3,7,8-tetrachlorodibenzofuran (TCDF) and 6-nitro-1,3,8-trichlorodibenzofuran (6-NCDF), were also evaluated. As observed for TCDD, human hepatocytes consistently showed a lower response than rat hepatocytes. As most TCDD-related effects are believed to be mediated via binding of the TCDD-Ah receptor (AhR) complex to DNA, nuclear AhR levels were measured in rat and human hepatocytes after TCDD treatment. We found that the nuclear AhR levels in TCDD-treated rat hepatocytes were approximately 4 times higher than found in TCDD-treated human hepatocytes. However, the estimated binding affinity of [3H]TCDD to nuclear AhR from rat hepatocytes was similar. The species difference in response to TCDD was further evaluated by analysis of CYP1A1 and CYP1A2 mRNA levels using Northern analysis, and P4501A1 and 1A2 protein levels using Western immunoblotting. Results showed that, at both gene expression and protein levels, TCDD induced predominantly CYP1A1 in rat hepatocytes and CYP1A2 in human hepatocytes.  相似文献   

6.
Sibutramine is a serotonin–norepine‐phrine reuptake inhibitor that was used for weight‐loss management in obese patients. Even though it was officially withdrawn from the market in 2010, it is still present in some tainted weight‐loss pills (as reported by US Food and Drug Administration). Thus, it is still reasonable to study the effects of this compound. The aim of this work was to investigate the potential of sibutramine to induce CYP1A1/CY3A4 in human cancer cell lines and CYP1A1/2, CYP2A6, CYP2B6, and CYP3A4 in human hepatocytes, a competent model of metabolically active cells. The levels of mRNA and protein of CYP1A1/1A2/3A4/2A6/2B6 were compared with the typical inducers, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) and rifampicin (RIF) for CYP1A1/2 and for other CYPs, respectively. The mRNA and protein levels of all genes in either cancer cell lines or human hepatocytes were induced when treated with typical inducers but not with sibutramine.  相似文献   

7.
8.
The modulation of liver growth control by the tumor promoter, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was investigated in primary hepatocytes of adult rats. Under defined conditions in serum-free cultures, the interaction of TCDD with growth-related hormones was studied. TCDD-treatment of the cultured hepatocytes for two days caused a transient stimulation of both DNA synthesis and mitotic activity. This effect was maximal at the very low nontoxic concentration of 10–12 M TCDD, i.e., two orders of magnitude below the optinzal concentrations for induction of drug metabolizing enzymes. Growth stimuladon by TCDD was dependent on the presence of growth-related hormones; in primary rat hepatocytes, TCDD acted synergistically with insulin and epidermal growth factor (EGF) and antagonized the growth inhibition by dexamethasone. Under culture conditions allowing high rates of DNA synthesis, e.g., at low concentrations of dexamethasone, in the presence of EGF plus alphal-adrenergic agonists or rat serum, no significant effect of TCDD on cellular growth was observed. Furthermore, TCDD failed to stimulate DNA synthesis in a rat hepatoma cell line, H4IIE, which is less sensitive to growth controlling factors than normal hepatocytes. Therefore, the results suggest that the growth modulation of primary rat hepatocytes by TCDD is the most sensitive parameter of the agent thus far observed. This effect may involve both a release from the growth inhibition caused, for instance, by glucocorticoids, as well as a direct growth-stimulating effect, synergistic to the one induced by insulin.Abbreviations Ah aryl hydrocarbon - EGF epidermal growth factor - EROD 7-ethoxyresorufin-0-deethylase - 3HdT [3H]thymidine - TCB 3,4,3,4-tetrachlorobiphenyl - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

9.
Pineal hormone melatonin is an important regulator of endocrine and circadian rhythms in vertebrates. Since liver is assumed to be the major organ in the metabolism of this indole hormone, we investigated the effect of the known Ah-receptor agonist, 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on melatonin metabolism in fish hepatocytes as well as the in vitro effect of melatonin on trout hepatic microsomal cytochrome P4501A (CYP1A) catalyst. Primary cell cultures of rainbow trout hepatocytes were exposed to [3H]melatonin (1 nM to 1 microM) alone and in combination with TCDD (50 pM) at 15 degrees C for 24 or 48 h. Analysis of melatonin and its metabolites in the culture medium and hepatocytes by HPLC revealed that about 96% of the added [3H]melatonin was metabolised after 24 h in both control and TCDD treated cultures. 3H-radioactivity was found mainly in the culture medium and less than 5% of the total 3H-radioactivity retained inside hepatocytes. Of the HPLC separated metabolites, one coeluted with 6-hydroxymelatonin and one unknown metabolite eluted after 6-hydroxymelatonin. In addition, two other metabolites were more water-soluble than 6-hydroxymelatonin and were considered to be conjugated products. Treatment of the hepatocytes with TCDD increased the amount of the major oxidated product, 6-hydroxymelatonin, about 2.5-fold after 24 h and 1.2-fold after 48 h exposure, respectively when compared with the control cultures. Whereas the amount of the unknown metabolite eluting after 6-hydroxymelatonin decreased about 1.3-fold after 24 h and 1.2-fold after 48 h exposure, respectively. Melatonin alone did not affect P4501A associated EROD-activity or CYP1AmRNA levels in the primary hepatocyte cultures. TCDD-treatment increased EROD-activity 3 to 5-fold and respective CYP1AmRNA content 6 to 14-fold, when compared with the control or melatonin-treated cultures. Furthermore, melatonin competitively inhibited EROD-activity in liver microsomes with a Ki value of 62.06+/-3.78 microM. The results show that TCDD alters metabolic degradation of melatonin in hepatocytes and suggest that P4501A may be an important P450 isoenzyme involved in oxidative metabolism of melatonin in fish liver.  相似文献   

10.
Cytochrome P4501A1 (CYP1A1) induction, a marker of aryl hydrocarbon (Ah) receptor activation, has been associated with carcinogenicity of the environmental agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Consistently, we show that TCDD treatment led to induction of CYP1A1 in responsive human cancer cell lines including HepG2, LS174T, and MCF-7, as determined by Western blotting and CYP1A form-selective R-warfarin 6- and 8-hydroxylation. TCDD, however, preferably induced CYP1A2, not CYP1A1, in primary human hepatocytes. Such CYP1A form-preferred induction at the protein level was apparently uncorrelated with non-preferred mRNA induction in any cells studied. Moreover, while both genes were up-regulated by TCDD in primary hepatocytes and HepG2 cells, the induction of CYP1A1 and CYP1A2 at the mRNA level was distinguishable, indicated by the marked differences in activation kinetics and the response to the protein synthesis inhibitors, anisomycin and cycloheximide. Furthermore, formation of total benzo(a)pyrene (BaP)-DNA adducts was not altered following BaP exposure in TCDD-treated primary hepatocytes, whereas significantly elevated, in a CYP1A1-dependent manner, in the treated HepG2 cells. Taken together, our findings, demonstrating the complexities of TCDD-associated human Ah receptor function and differential regulations of CYP 1A enzymes, suggest clearly the need for caution when extrapolating data obtained in cell-based models.  相似文献   

11.
BACKGROUND: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure prior to chick embryo incubation (GD 0) induces dilated cardiomyopathy, and reduces myocardial hypoxia, vascular endothelial growth factor A (VEGF-A) expression, and coronary vascularization. We investigated whether reduced coronary vascularization 1) occurs in the absence of changes in cardiac morphology and 2) is associated with altered secretion of VEGF-A and/or an antivasculogenic factor. METHODS: Chicken eggs were treated with control (corn oil) or TCDD (0.075-0.3 pmol of TCDD/gm) on GD 5. In vivo cardiac morphology and artery number were determined on GD 10, while in vitro vascular outgrowth and VEGF-A secretion were determined from cardiac explants on GD 6. Effects of recombinant VEGF-A (rcVEGF-A), soluble flt-1 (sFlt-1) receptor plus rcVEGF-A, and control conditioned media were assessed in TCDD explants, while effects of TCDD-conditioned media was assessed in control explants. RESULTS: TCDD reduced coronary artery number in vivo by 53 +/- 8% and induced a dose-related reduction in tube outgrowth in vitro, but had no effect on cardiac morphology. All TCDD doses reduced explant VEGF-A secretion equally (43 +/- 3%), compared to control. sFlt-1 blocked outgrowth in control cultures and blocked rcVEGF-A-mediated rescue of outgrowth in TCDD explants. Control conditioned media partially rescued outgrowth from TCDD explants, while conditioned media from TCDD explants had no effect on controls. CONCLUSIONS: TCDD inhibition of coronary vascularization can occur in the absence of changes in cardiac morphology and is associated with reduced VEGF-A secretion but not an antivasculogenic factor. Since control media only partly rescues TCDD's inhibitory effect, we suggest that TCDD-exposed endothelial cells are less responsive to vasculogenic stimuli.  相似文献   

12.
We compared the ability of two clonally derived murine preadipocyte cell lines, 3T3-L1(L1) and 3T3-F442A (F442A), to differentiate after treatment by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and found that the former cell line was clearly suppressed by TCDD but the latter was not. It was initially postulated that the easiest way to explain the lack of response to TCDD in F442A cells could be an alteration in aryl hydrocarbon receptor (AhR) functionality. This hypothesis was tested first, but no differences were found in the levels or functions of AhR. To find an alternate explanation for such a differential effect of TCDD, we tested the action of several diagnostic agents on the process of adipocyte differentiation of these two cells. No differences were found between these two lines of cells in the susceptibility to the antiadipogenic action of 12-0-tetradecanoylphorbol-13-acetate (TPA), or to TNFalpha, indicating that the basic biochemical components engaged in the antiadipogenic actions of these agents in these two cell lines are similar. In contrast, F442A cells were found to be more resistant to the antiadipogenic action of EGF or TGFbeta than L1 cells which were tested side by side. Based on the knowledge that TNFalpha preferentially affects C/EBPalpha and that TGFbeta specifically controls C/EBPbeta and delta in their antiadipogenic action, we hypothesized that the major cause for the differential response of these two similar cell lines could be the insensitivity of C/EBPbeta and/or delta of F442A cells to the action of TCDD. We could obtain supporting data for this hypothesis, showing that in F442A cells, the level of C/EBPbeta is already high even before the addition of adipocyte differentiation factors and that TCDD did not cause any significant changes in the titer of C/EBPbeta.  相似文献   

13.
The present experiments were conducted to test 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) accumulation in the tissues, and its influence on cell proliferation and steroid secretion. A dose of 3.2 ng of TCDD/g tissue was added at the beginning of the culture, and the media were changed every 24 h or not changed till the end (96 h) of the culture. TCDD in the tissue was analysed by mass spectrometry, and the percentage of proliferating cells was measured using the MIB-1 labelling index. TCDD added to the culture medium accumulated in the tissues after 24 h (59.3%) and 96 h (81.2%) of exposure. The accumulative effect of TCDD was manifested by a reduction in the percentage of proliferating cells (53.5 and 33.8%, after 24 and 96 h exposure, respectively). A single exposure to TCDD had no effect on progesterone, reduced testosterone secretion and caused a significant increase in oestradiol secretion. Prolonged exposure to TCDD caused an increase in the concentration of the three steroids investigated in the culture medium. The results suggest that TCDD action is complex in the follicles.  相似文献   

14.
The mechanism of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is thought to result from changes in gene expression via the aryl hydrocarbon receptor (AHR). The induction of cytochrome P450 1A (CYP1A) in various organs is a cardinal effect of TCDD. However, whether CYP1A is involved in endpoints of TCDD toxicity is controversial. We investigated the role of CYP1A in TCDD-induced developmental toxicities using gene knock-down with morpholino antisense oligos. Exposure of zebrafish embryos to TCDD, at concentrations eliciting the hallmark endpoints of developmental toxicity, induced CYP1A in the heart and vascular endothelium throughout the body. This induction by TCDD was markedly inhibited by morpholinos to zebrafish arylhydrocarbon receptor 2 (zfAHR2-MO) and to zebrafish CYP1A (zfCYP1A-MO). The zfAHR2-MO but not the zfCYP1A-MO inhibited zfCYP1A mRNA expression, indicating the specificities of these morpholinos. Injection of either zfAHR2-MO or zfCYP1A-MO blocked the representative signs of TCDD developmental toxicity in zebrafish, pericardial edema and trunk circulation failure. The morpholinos appeared do not affect normal development in TCDD-untreated embryos. These results suggest a mediatory role of zfCYP1A induction through zfAHR2 activation in causing circulation failure by TCDD in zebrafish. This is the first molecular evidence demonstrating an essential requirement for CYP1A induction in TCDD-evoked developmental toxicities in any vertebrate species.  相似文献   

15.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces abnormalities in steroid-dependent processes such as mammary cell proliferation, gonadotropin release and maintenance of pregnancy. In the current study, the effects of TCDD on the pharmacokinetics of 17beta-estradiol and progesterone were examined. Adult Sprague-Dawley rats were ovariectomized and pretreated with TCDD (15 microg/kg p.o.) or vehicle. A single bolus of 17beta-estradiol (E2, 0.3 micromol/kg i.v.) or progesterone (P4, 6 micromol/kg i.v.) was administered 24 hours after TCDD and blood was collected serially from 0-72 hours post-injection. Intravenous E2 and P4 in DMSO vehicle had elimination half-lives of approximately 10 and 11 hours, respectively. TCDD had no significant effect on the pharmacokinetic parameters of P4. The elimination constant and clearance of E2 were decreased by TCDD while the elimination half-life, volume of distribution and area under the time*concentration curve were not altered significantly. Overall, these results indicate that diminished serum progesterone and estradiol concentrations following exposure to TCDD are due primarily to actions on steroid synthesis and release rather than any alterations in pharmacokinetics.  相似文献   

16.
We investigated the cause for resistance to TCDD toxicity in TGFalpha mutant wa-1 mice (wa/wa) as compared to its wild-type C57BL/6J(+/+) counterpart. For this purpose after 1 or 10 days TCDD (115 microg/kg) exposure, liver samples were isolated. Biochemical investigations revealed that wa/wa mice showed decreased effects of TCDD characterized by reduced triglyceride accumulation and lesser declines in glycogen levels. qRT-PCR mRNA analysis demonstrated that while the effect of TCDD on EGF receptor and ERK-1 in wa/wa mice were indistinguishable from +/+ mice, upregulation by TCDD of c-Src and ERK-2 and downregulation of PEPCK were less pronounced in the wa/wa mice. To confirm that these differences are due to intrinsic cellular characteristics, mouse embryonic fibroblast (MEF) cells were cultured from embryos and their responses to 10 nM TCDD were assessed. qRT-PCR analysis showed that MEF from the wa/wa mice was less responsive to TCDD in terms of its stimulatory effect on ERK-2, but not on ERK-1. These results indicate that a possible mechanism why wa/wa mice are less responsive to TCDD is that two genes encoding for the growth factor signaling components, c-Src and ERK-2, are not readily affected by TCDD.  相似文献   

17.
18.
Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on hepatocytes isolated from immature rainbow trout (Oncorhynchus mykiss) by collagenase perfusion were investigated with respect to induction of cytochrome P450 1A (CYP1A) enzyme activities and protein contents as well as DNA damage. Exposure of primary rainbow trout hepatocytes to TCDD resulted in increased CYP1A contents, as determined by immunoblotting, enhanced activities of 7-ethoxyresorufin-O-deethylase (EROD) and increased DNA damage as determined by the comet assay. By means of electron microscopy, no symptoms of cytotoxicity could be observed except for slight increases of lysosomal components and the smooth endoplasmic reticulum. Whereas CYP1A contents constantly increased over the duration of the entire experiment, EROD activities remained constant from day 3 of exposure to 1 nM TCDD; maximum induction of CYP1A activities was reached with 0.1 nM TCDD after 5 days. DNA damage increased in a time- and dose-dependent fashion until day 3. After 5 days, DNA damage was less pronounced, and the number of damaged nuclei declined in all TCDD concentrations. Since TCDD has been shown to not directly react with DNA, metabolism of TCDD or TCDD-induced changes in other metabolic pathways are suspected to result in the production of DNA-reactive (endogenous) substances.  相似文献   

19.
ACTH regulation of cholesterol movement in isolated adrenal cells   总被引:3,自引:0,他引:3  
Confluent bovine adrenal cell primary cultures respond to stimulation by adrenocorticotropin (ACTH) to produce steroids (initially predominantly cortisol and corticosterone) at about one-tenth of the output of similarly stimulated rat adrenal cells. The early events of steroidogenesis, following ACTH stimulation, have been investigated in primary cultures of bovine adrenal cortical cells. Steroidogenesis was elevated 4-6-fold within 5 min of exposure to 10(-7) M ACTH and increased linearly for 12 h and declined thereafter. Cholesterol side-chain cleavage (SCC) activity was increased 2.5-fold in mitochondria isolated from cells exposed for 2 h to ACTH and 0.5 mM aminoglutethimide (AMG), even though cytochrome P-450scc only increases after 12 h. Mitochondrial-free cholesterol levels increased during the same time period (16.5-25 micrograms/mg of protein), but then both cholesterol levels and SCC activity declined in parallel. More prolonged exposure to ACTH prior to addition of AMG caused the elevation in mitochondrial cholesterol to more than double, possibly due to enhanced binding capacity. Early ACTH-induced effects on cellular steroidogenesis result from these changes in mitochondrial-free cholesterol. The maximum rate of cholesterol transport to mitochondria in AMG-blocked cells was consistent with the maximum rate of cellular steroidogenesis. Cycloheximide (0.2 mM) rapidly blocked (less than 10 min) cellular steroidogenesis, cholesterol SCC activity, and access of cholesterol to cytochrome P-450scc without affecting mitochondrial-free cholesterol. Exposure of confluent cultures to the potent environmental toxicant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (10(-8) M), for 24 h prior to ACTH addition decreased the rates of ACTH- and cAMP-stimulated steroidogenesis but did not affect the basal rate. In both cases, the effectiveness of TCDD increased with time of exposure to the stimulant. Although cholesterol accumulated in the presence of ACTH and AMG (13-28 micrograms/mg), pretreatment of cells with TCDD caused a decrease in mitochondrial cholesterol (13-8 micrograms/mg). The effect of TCDD was produced relatively rapidly (t1/2 approximately 4 h). Since even in the absence of TCDD, the mitochondria of ACTH-stimulated cells also eventually lose cholesterol (after 2 h) TCDD pretreatment may increase the presence of a protein(s) that cause this mitochondrial-cholesterol depletion following stimulation by ACTH or cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The objective of this study was to examine the potential for a specific ligand of carcinogen binding protein (CBP) to induce changes in the overall character of hepatic microsomal cytochromes P-450 (P450) and to compare potential changes with those induced by an Ah receptor ligand. Benzo[e]pyrene (BeP) was previously shown to bind CBP with high affinity and Ah receptor with low affinity. In contrast, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) binds Ah receptor avidly and CBP weakly. Hepatic microsomes were prepared from C57BL/6J (B6) and DBA/2J (D2) mice treated with corn oil, BeP or TCDD. Relative to corn oil controls, pretreatment of B6 mice with BeP or TCDD increased the nmol P450/mg microsomal protein content 26 and 28%, respectively. In D2 mice, nmol P450/mg microsomal protein was increased 23% in the BeP pretreatment, while TCDD pretreatment had no effect relative to the corn oil controls. For the O-alkyl ethers of resorufin, rates of metabolism (per nmol P450) were affected differently in B6 and D2 by BeP pretreatment. Pentoxyresorufin O-dealkylase activity was reduced to 44% of control activity in B6 mice and increased 39% relative to controls in D2 mice. BeP pretreatment had no effect on ethoxyresorufin O-dealkylase activity in B6 mice, while this activity was decreased to 58% of controls in D2 mice. Additionally, benzyloxyresorufin O-dealkylase activity was reduced to 65% of control levels in B6 mice and not affected in D2 mice. Methoxyresorufin O-dealkylase activity was reduced in both strains to an average of 55% of control values. As expected, TCDD pretreatment resulted in increases of all O-dealkylations measured in both strains of mouse. For both inbred strains of mouse, anion exchange chromatography revealed a P450 peak associated with BeP pretreatment that was not present in chromatograms generated with corn oil or TCDD pretreatments. Results of enzyme linked immunosorbant assays also indicated that the pattern of P450 isoenzyme expression associated with BeP pretreatment was distinct from that associated with TCDD pretreatment. Overall, these data show that treatment with a specific ligand of CBP induces changes the biochemical activities and chromatographic behavior of P450 isozymes in murine hepatic microsomes. Moreover, they indicate that changes in P450 occurring after treatment with a CBP ligand are distinct from those changes that are associated with treatment with an Ah receptor ligand (TCDD). Differences between B6 and D2 strains suggest that the hepatic P450 changes occurring in response to pretreatment with a CBP ligand may be influenced by the presence of Ah receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号