首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effect of high concentration K+ (50 mM K+) stimulation to neurosecretory GH3 cells under voltage clamp control and unexpectedly found a considerable increase in the inward current evoked by depolarizing pulses. This augmented current was present in Na+-free solution containing Ca2+, tetraethylammonium+ and tetrodotoxin and showed similarity in its voltage dependence to the Ca+ channel current in the control (5 mM K+) solution. The augmented current was significantly reduced by Ca2+ channel blockers, Co2+ (5 mM) and nifedipine (2.5 microM), and was increased by the raise of external Ca2+ concentration. Correspondingly, Quin-2 experiments in GH3 cells showed that the rise in cytosolic free Ca2+ concentration in response to high K+ stimulation was suppressed by the same concentration of nifedipine. These data suggest that, in addition to its depolarizing effect, high K+ may modify voltage-sensitive Ca2+ channels such that they exhibit increased permeability although their voltage dependence of activation and pharmacological sensitivity remain largely unchanged.  相似文献   

2.
The aim of the present study was to investigate the mechanisms involved in the contraction evoked by iso-osmotic high K+ solutions in the estrogen-primed rat uterus. In Ca2+-containing solution, iso-osmotic addition of KCl (30, 60 or 90 mM K+) induced a rapid, phasic contraction followed by a prolonged sustained plateau (tonic component) of smaller amplitude. The KCl (60 mM)-induced contraction was unaffected by tetrodotoxin (3 microM), omega-conotoxin MVIIC (1 microM), GF 109203X (1 microM) or calphostin C (3 microM) but was markedly reduced by tissue treatment with neomycin (1 mM), mepacrine (10 microM) or U-73122 (10 microM). Nifedipine (0.01-0.1 microM) was significantly more effective as an inhibitor of the tonic component than of the phasic component. After 60 min incubation in Ca2+-free solution containing 3 mM EGTA, iso-osmotic KCl did not cause any increase in tension but potentiated contractions evoked by oxytocin (1 microM), sodium orthovanadate (160 micrM) or okadaic acid (20 microM) in these experimental conditions. In freshly dispersed myometrial cells maintained in Ca2+-containing solution and loaded with indo 1, iso-osmotic KCl (60 mM) caused a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i). In cells superfused for 60 min in Ca2+-free solution containing EGTA (1 mM), KCl did not increase [Ca2+]i. In Ca2+-containing solution, KCl (60 mM) produced a 76.0 +/- 16.2% increase in total [3H]inositol phosphates above basal levels and increased the intracellular levels of free arachidonic acid. These results suggest that, in the estrogen-primed rat uterus, iso-osmotic high K+ solutions, in addition to their well known effect on Ca2+ influx, activate other cellular processes leading to an increase in the Ca2+ sensitivity of the contractile machinery by a mechanism independent of extracellular Ca2+.  相似文献   

3.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+ -induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+ -induced increase in [Ca2+], was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25-2.0 mM). The L-type Ca2+ -channel blockers, verapamil and diltiazem, at low concentrations (1 microM) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 microM), and diltiazem (5 and 10 microM) as well as with amiloride (5-20 microM), nickel (1.25-5.0 mM), cyclopiazonic acid (25 and 50 microM) and thapsigargin (10 and 20 microM). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 microM). These data suggest that in addition to the sarcolemmal Na+ - Ca2+ exchanger, both sarcolemmal Na+ - K+ ATPase, as well as the sarcoplasmic reticulum Ca2+ -pump play prominent roles in the low Na+ -induced increase in [Ca2+]i.  相似文献   

4.
The roles of K+, Ca2+, and Na+ ions in the mechanism of gonadotropin releasing hormone (GnRH) action on frog (Rana pipiens) hemipituitaries were studied using an in vitro superfusion system. The effects of elevated K+ alone or in combination with Ca2+-depleted medium, tetrodotoxin (TTX), or with 100 ng/ml GnRH were examined. The involvement of K+ was also studied indirectly through the use of tetraethyl ammonium chloride (TEA). The importance of Ca2+ was established by the loss of responsiveness to GnRH in Ca2+-depleted medium, or in the presence of the Ca2+ competitor CoCl2. The absence of a major dependence of GnRH on Na+ was revealed by the continued gonadotropin secretion after addition of 1 microM TTX to medium containing GnRH or 36.3 mM KCl, or by replacement of NaCL with choline chloride. High (10 X normal) KCl (36.3 mM) stimulated gonadotropin--both LH and FSH--secretion, but the response was more gradual than for GnRH. The inclusion of TEA (to block K+ efflux) in medium with GnRH accentuated the effect of GnRH, and the effects of elevated (36.3 mM) KCl and 100 ng/ml GnRH (a relatively high dose) were additive. Responses to high K+, like GnRH, were abolished by removal of Ca2+ from the medium. Overall, the roles of K+, Ca2+, and Na+ ions in the mechanism of GnRH action are very similar between mammals and frogs; Ca2+ apparently serves a critical function in the mechanism of GnRH action, while Na+ appears not to be involved. K+ can induce gonadotropin secretion, but it is not clear that it plays a direct role in the mediation of the action of GnRH.  相似文献   

5.
In rat prefrontal cortical slices, the excitatory amino acids N-methyl-D-aspartate (NMDA), ibotenate, L-aspartate, quisqualate, kainate and L-glutamate inhibit carbachol-induced phosphoinositide hydrolysis as measured by the accumulation of [3H]inositol-1-phosphate ([3H]IP1). NMDA dose-dependently inhibited the carbachol response (IC50 = 14.4 microM), and this inhibition was blocked by the NMDA receptor antagonist D,L-aminophosphonovaleric acid. Lowering medium Na+ concentration to 10 mM or exposing slices to pertussis toxin alleviated the inhibitory effect of NMDA on carbachol-induced [3H]IP1 formation. Serotonin-induced stimulation of [3H]IP1 was also inhibited by NMDA; in contrast, stimulation by norepinephrine, epinephrine or dopamine was unaffected. The results suggest that excitatory amino acids, besides their traditional role as stimulatory substances, can also act to inhibit the production of 2nd messengers activated by certain neurotransmitters in the brain.  相似文献   

6.
The effects of substrate condition and ADP beta S on the pCa2+-tension relationships were investigated, using alpha-toxin permeabilized rabbit mesenteric artery at 37 degrees C. The contraction induced by 10 microM Ca2+ solution after permeabilization was as large as that induced by 145 mM K+ PSS solution containing 10 microM NE in the intact tissue, indicating that the majority of the cells were permeabilized. The Ca2+ sensitivity was greatly affected by the substrate condition and increasing the ratio of ATP/CP induced a leftward shift of the pCa2+-tension curve. Addition of 100 microM ADP beta S had a similar effect. When the ATP/CP ratio was high, the 0.1 microM Ca2+ solution relaxed the tissue precontracted by 10 microM Ca2+ solution more slowly showing hysteresis. One mM vanadate, which is reported to relax muscle by forming actomyosin-ADP-Vi (AM-ADP-Vi), completely inhibited both contractions induced by 0.18 microM Ca2+ solution containing 2 mM MgADP and 0.3 microM Ca2+ solution containing 0.3 microM PDBu. These results indicated that the population of AM-ADP complex in the crossbridge had increased due to the accumulation of ADP inside the tissue or activation of PKC and that the inhibition of ADP release from AM-ADP complex may be playing a key role in increasing Ca2+ sensitivity of myofilaments.  相似文献   

7.
Na+/H+ exchange activity was investigated in cultured rat thyroid follicular FRTL-5 cells using the pH sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Basal intracellular pH (pHi) was 7.13 +/- 0.10 in cells incubated in Hepes-buffered saline solution. The intracellular buffering capacity beta i was determined using the NH4Cl-pulse method, yielding a beta i value of 85 +/- 12 mM/pH unit. The relationship between extracellular Na+ and the initial rate of alkalinization of acid-loaded cells showed simple saturation kinetics, with an apparent Km value of 44 +/- 26 mM, and an Vmax value of 0.3 +/- 0.01 pH unit/min. The agonist-induced activation of Na+/H+ exchange was investigated in cells acidified with nigericin. Addition of 12-O-tetradecanoylphorbol 13-acetate (TPA) or ATP induced rapid cytosolic alkalinization in acid-loaded cells. The action of both TPA and ATP was abolished by preincubating the cells with 100 microM amiloride, by substituting extracellular Na+ with equimolar concentrations of choline+, and by pretreating the cells with TPA for 24 h. Chelating extracellular Ca2+, or depleating intracellular Ca2+ pools did not affect the ATP-induced alkalinization. The results indicate, that FRTL-5 cells have a functional Na+/H+ exchange mechanism. Furthermore, stimulation of protein kinase C activity is of importance in activating the antiport.  相似文献   

8.
Two kinds of ATP binding sites were found to exist on the ATPase molecule. One was the catalytic site (1 mol/mol phosphorylation site) and its apparent dissociation constant for ATP was about 1 microM. The other was the regulatory site(s) and its apparent dissociation constant for ATP was equal to or higher than about 0.2 mM. The affinities of both sites for AMPPNP were three times lower than those for ATP. The affinity of the ATPase for ATP was reduced by the addition of KCl, but unaffected by the addition of NaCl. As thermodynamically expected, the affinity of the Na+-binding sites for Na+ ions was almost completely unaffected by the addition of ATP, which markedly decreased that of the K+-binding sites for K+ and Rb+ ions. In the absence of KCl, Na+ ions were bound very rapidly to the Na+-binding sites [(1979) J. Biochem. 86, 509--523]. However, Na+ ions were bound very slowly to the enzyme preincubated with 50 microM KCl, and the Na+ binding was markedly accelerated by the addition of ATP or AMPPNP at concentrations much higher than several microM. On the other hand, in the presence of 50 microM KCl, 1 mol of ATP was bound to the catalytic site with the same dissociation constant as that in the absence of KCl, and another 1 mol of ATP bound with a dissociation constant of about 0.1 mM. Therefore, we concluded that the Na+ binding to the enzyme in a K+ form is markedly accelerated by the binding at ATP to the regulatory site.  相似文献   

9.
The influence of variation in the extracellular concentrations of Na+, Mg2+, and Ca2+ in the depolarizing medium on isoproterenol-induced increases in cAMP levels and relaxation was studied in rat uterus. Isoproterenol (10(-8) M) failed to increase cAMP levels in the high-K+ medium containing no Na+. When 80 mM Na+ was present in the medium, isoproterenol caused increases in cAMP levels similar to those observed in nondepolarized uterus. A similar effect of 2.5 mM Mg2+ was observed on the cAMP response. These effects of Na+ and Mg2+ were antagonized by increasing the extracellular concentration of Ca2+. The simultaneous presence of 80 mM Na+ and 2.5 mM Mg2+ did not produce an additive effect on the cAMP responses.  相似文献   

10.
The aim of the present study was to analyze the mechanisms involved in the relaxation induced by 1 microM acetylcholine (ACh) in aortic segments from fetal rats at term precontracted with 3 microM prostaglandin F2alpha (PGF2alpha) and incubated with 1 microM indomethacin. The endothelium-dependent relaxation caused by ACh was reduced by the nitric oxide (NO) synthase inhibitor NG-monomethyl-L-arginine (L-NMMA, 0.1 mM), such an effect was reversed by 0.1 mM L-arginine (L-Arg). After precontraction of segments with 50 mM KCl the relaxant response to ACh was smaller than that after precontraction with PGF2alpha; this reduction was increased by L-NMMA, whereas L-NMMA plus L-Arg potentiated the relaxation. Thiopentone sodium (0. 1 mM), ouabain (10 microM), tetraethylammonium (TEA, 0.5 mM) and apamin (1 microM), inhibitors of cytochrome P450 monooxygenases, Na+ pump, Ca2+-activated (KCa) and small-conductance (SKCa) K+ channels, respectively, reduced the relaxation to ACh, which was unaffected by charybdotoxin (0.1 microM) and glibenclamide (1 microM), inhibitors of large-conductance BKCa and ATP-sensitive K+ channels. The L-NMMA/indomethacin-resistant relaxation to ACh was markedly reduced by thiopentone sodium, and similarly decreased by either ouabain or TEA. The endothelium-independent relaxation induced by exogenous NO (10 microM) in segments precontracted with PGF2alpha was unaltered by ouabain, glibenclamide, TEA and after precontraction with 50 mM KCl, and potentiated by L-NMMA. The potentiation of NO responses by L-NMMA was also observed in segments precontracted with KCl. These results suggest that ACh relaxes the fetal rat aorta by endothelial release of both NO and endothelium-derived hyperpolarizing factor (EDHF), a metabolite derived from cytochrome P450 monooxygenases, that hyperpolarizes smooth muscle cells by activation of KCa, essentially SKCa channels, and Na+ pump. It seems that when the effect of EDHF is abolished, the formation of NO could be increased.  相似文献   

11.
The effect on the vasocontractile response of pretreatment with NH4Cl at a concentration (10 mM) that made almost no change in the resting tension was investigated using aortic strips from rats. NH4Cl pretreatment for 10 min significantly potentiated strip contractions induced by KCl (less than or equal to 30 mM), BAY K 8644 (0.1 microM) and phenylephrine (0.01 microM). This potentiating action of NH4Cl was eliminated in presence of nifedipine (1 microM). KCl (14.7 mM)-stimulated 45Ca uptake in rat aorta was significantly potentiated by pretreatment with NH4Cl (10 mM) for 10 min, but this NH4Cl effect was also eliminated in the presence of nifedipine. These results suggest that NH4Cl potentiates contractions induced by KCl and agonists in rat aorta by facilitating calcium influx through the nifedipine-sensitive calcium channel.  相似文献   

12.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

13.
A high basal level of phosphorylation (approx. 70% of the optimal Na+-dependent phosphorylation level) is observed in 50 mM imidazole-HCl (pH 7.0), in the absence of added Na+ and K+ and the presence of 10-100 microM Mg2+. In 50 mM Tris-HCl (pH 7.0) the basal level is only 5%, irrespective of the Mg2+ concentration. Nevertheless, imidazole is a less effective activator of phosphorylation than Na+ (Km imidazole-H+ 5.9 mM, Km Na+ 2 mM under comparable conditions). Imidazole-activated phosphorylation is strongly pH dependent, being optimal at pH less than or equal to 7 and minimal at pH greater than or equal to 8, while Na+-activated phosphorylation is optimal at pH 7.4. This suggests that imidazole-H+ is the activating species. Imidazole facilitates Na+-stimulated phosphorylation. The Km for Na+ decreases from 0.63 mM at 5 mM imidazole-HCl to 0.21 mM at 50 mM imidazole-HCl (pH 7; 0.1 mM Mg2+ in all cases). Imidazole-activated phosphorylation is more sensitive to inhibition by K+ (I50 = 12.5 microM) than Na+-activated phosphorylation (I50 = 180 microM). Mg2+ antagonizes activation by imidazole-H+ and also inhibition by K+. The Ki value for Mg2+ (approx. 0.3 mM) is the same for the two antagonistic effects. Tris buffer (pH 7.0) inhibits imidazole-activated phosphorylation with an I50 value of 30 mM in 50 mM imidazole-HCl (pH 7.0) plus 0.1 mM Mg2+. We conclude that imidazole-H+, but not Tris-H+, can replace Na+ as an activator of ATP-dependent phosphorylation, primarily by shifting the E2----E1 transition to the right, leading to a phosphorylating E1 conformation which is different from that in Tris buffer.  相似文献   

14.
The mitogenic response of human peripheral blood lymphocytes to the lectin concanavalin A (conA) is inhibited by micromolar concentrations of CdCl2. This inhibition is partially relieved by an increase in the external Ca2+ concentration (from 0.6 to 2.2 mM). The initial rate of conA-induced 45Ca2+ influx is unaltered by CdCl2, although the level of 45Ca2+ accumulation increases. The basal rate of 45Ca2+ entry is not measurably disturbed by CdCl2 (100 microM). The steady-state efflux of 45Ca2+ and the calmodulin-activated (Ca2+ + Mg2+)-ATPase activity of erythrocyte ghosts are inhibited by CdCl2 (10 microM). Thus, the mechanism behind the Cd2+-induced suppression of the mitogenic response to conA is not due to alteration of mitogen-stimulated Ca2+ influx. We suggest that Cd2+ competes with Ca2+ for intracellular Ca2+-binding molecules, such as calmodulin, essential for the induction of cell proliferation.  相似文献   

15.
The effect on Na+ efflux of removal of intracellular Mg2+ was studied in squid giant axons dialyzed without internal Ca2+. In the absence of Mg2i+, ATP was unable to stimulate any efflux of Na+ above the baseline of about 1 pmol . cm-2 . s-1. This behavior was observed in otherwise normal axons and in axons poisoned with 50 microM strophanthidin in the sea water. Reinstatement of 4 mM MgCl2 in excess to ATP in the dialysis solution brought about the usual response of Na+ efflux to ATP, external K+ and strophanthidin. The present experiments show that, regardless of the mechanism for the ATP-dependent Na+ efflux in strophanthidin-poisoned axons, this type of flux shares with the active Na+ extrusion the need for the simultaneous presence of intracellular ATP and Mg2+.  相似文献   

16.
The effects of eugenol (1-2000 microM) on rat isolated ileum were studied. Eugenol relaxed the basal tonus (IC50 83 microM) and the ileum precontracted with 60 mM KCl (IC50 162 microM), an action unaltered by 0.5 microM tetrodotoxin, 0.2 mM N(G)-nitro-L-arginine methyl ester, 0.5 mM hexamethonium, and 1 microM indomethacin. Eugenol did not alter the resting transmembrane potential (Em) of the longitudinal muscle layer under normal conditions (5.0 mM K+) or in depolarised tissues. Eugenol reversibly inhibited contractions induced by submaximal concentrations of acetylcholine (ACh) and K+ (40 mM) with IC50 values of approximately 228 and 237 microM, respectively. Eugenol blocked the component of ACh-induced contraction obtained in Ca(2+)-free solution (0.2 mM EGTA) or in the presence of nifedipine (1 microM). Our results suggest that eugenol induces relaxation of rat ileum by a direct action on smooth muscle via a mechanism largely independent of alterations of Em and extracellular Ca2+ influx.  相似文献   

17.
K Enomoto  M F Cossu  T Maeno  C Edwards  T Oka 《FEBS letters》1986,203(2):181-184
Epidermal growth factor (EGF) induces a hyperpolarizing response of 5-20 mV amplitude in mouse mammary epithelial cells in culture. The amplitude of the hyperpolarizing response was reduced by more than 60% within several minutes after addition of blockers of voltage and/or Ca2+-dependent K+ channels such as tetraethylammonium (7 mM) or quinine (0.29 mM). Both nifedipine (0.15 mM), a blocker of the Ca2+ channel, and ruthenium red (2 mM), an inhibitor of the Ca2+-binding site, also reduced the amplitude of the hyperpolarizing response by more than 60%. The Ca2+ ionophore, A23187 (3.8 microM), induced a large hyperpolarization, which was 25-40 mV and lasted about 3 min. These data suggest that activity of the Ca2+-dependent K+ channel was involved in the EGF-induced hyperpolarizing response of the mammary epithelial cells.  相似文献   

18.
Tissue slices of shark rectal gland are studied to examine the kinetics of the cellular fluxes of taurine, a major intracellular osmolyte in this organ. Maintenance of high steady-state cell taurine (50 mM) is achieved by a ouabain-sensitive active Na+-dependent uptake process and a relatively slow efflux. Uptake kinetics are described by two saturable taurine transport components (high-affinity, Km 60 microM; and low-affinity, Km 9 mM). [14C]Taurine uptake is enhanced by external Cl-, inhibited by beta-alanine and unaffected by inhibitors of the Na+/K+/2Cl- co-transport system. Two cellular efflux components of taurine are documented. Incubation of slices in p-chloromercuribenzene sulfonate (1 mM) reduces taurine uptake, increases efflux of taurine and induces cell swelling. Studies of efflux in isotonic media with various cation and anion substitutions demonstrate that high-K+ markedly enhances taurine efflux irrespective of cell volume changes (i.e. membrane stretching is not involved). Moreover, iso-osmotic cell swelling induced in media containing propionate is not associated with enhanced efflux of taurine from the cells. It is suggested that external K+ exerts a specific effect on the cytoplasmic membrane to increase its permeability to taurine.  相似文献   

19.
The primary extrusion of Na+ from Mycoplasma gallisepticum cells was demonstrated by showing that when Na+-loaded cells were incubated with both glucose (10 mM) and the uncoupler SF6847 (0.4 microM), rapid acidification of the cell interior occurred, resulting in the quenching of acridine orange fluorescence. No acidification was obtained with Na+-depleted cells or with cells loaded with either KCl, RbCl, LiCl, or CsCl. Acidification was inhibited by dicyclohexylcarbodiimide (50 microM) and diethylstilbesterol (50 microM), but not by vanadate (100 microM). By collapsing delta chi with tetraphenylphosphonium (200 microM) or KCl (25 mM), the fluorescence was dequenched. The results are consistent with a delta chi-driven uncoupler-dependent proton gradient generated by an electrogenic ion pump specific for Na+. The ATPase activity of M. gallisepticum membranes was found to be Mg2+ dependent over the entire pH range tested (5.5 to 9.5). Na+ (greater than 10 mM) caused a threefold increase in the ATPase activity at pH 8.5, but had only a small effect at pH 5.5. In an Na+-free medium, the enzyme exhibited a pH optimum of 7.0 to 7.5, with a specific activity of 30 +/- 5 mumol of phosphate released per h per mg of membrane protein. In the presence of Na+, the optimum pH was between 8.5 and 9.0, with a specific activity of 52 +/- 6 mumol. The Na+-stimulated ATPase activity at pH 8.5 was much more stable to prolonged storage than the Na+-independent activity. Further evidence that two distinct ATPases exist was obtained by showing that M. gallisepticum membranes possess a 52-kilodalton (kDa) protein that reacts with antibodies raised against the beta-subunit of Escherichia coli ATPase as well as a 68-kDa protein that reacts with the anti-yeast plasma membrane ATPases antibodies. It is postulated that the Na+ -stimulated ATPases functions as the electrogenic Na+ pump.  相似文献   

20.
Antibodies to GM1 ganglioside enhance the release of gamma-aminobutyric acid (GABA) from rat brain slices induced by depolarization with either 40 mM K+ or 200 microM veratrine. Three new observations are now reported. (a) GABA release induced by the Ca2+ ionophore A23187 was not affected by these antibodies. Because this Ca2+ ionophore causes transmitter release by bypassing depolarization-induced opening of Ca2+ channels, this result suggests that gangliosides participate either in the functioning of such Ca2+ channels or in the Na+ channels involved in depolarization. (b) The enhancement (by antibodies to GM1 ganglioside) of GABA release induced by high K+ levels occurred in the presence of tetrodotoxin (0.01 microM). (c) GABA release induced by veratrine in the absence of Ca2+ was not affected by the antibodies. These latter two observations indicate that Na+ channels are not involved in the action of the antibodies. We conclude that this evidence points to the participation of gangliosides in Ca2+ channel functions involved in GABA release in rat brain slices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号