首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Leaf tissue from five sugarcane clones with distinctive markers was cultured on a medium favoring callus growth. Transferred to a differentiation medium, calli produced over 5000 plants. Plants differentiated from two clones with stem markers exhibited a high rate of remission of the marker, but the marker reappeared in the vegetative progeny of these plants, and remission was, therefore, transient. Plants differentiated from callus from two clones with leaf markers showed a low rate of remission (2 or 3 per thousand) of the marker and the vegetative progeny was stable. A clone with variegated leaves produced plants with the majority having green leaves, some were albino, and some variegated, suggesting that plant differentiation may start with more than one cell. Permanent phenotypic change may result from tissue culture, but the results suggest that such changes are not frequent and may be confounded by temporary alterations or by chimeras formed in the process of differentiation.  相似文献   

2.
The propagation of plants through tissue culture can induce a variety of genetic and epigenetic changes. Variation in DNA methylation has been proposed as a mechanism that may explain at least a part of these changes. In the present study, the methylation of tomato callus DNA was compared with that of leaf DNA, from control or regenerated plants, at MspI/HpaII sites around five middle-repetitive sequences. Although the methylation of the internal cytosine in the recognition sequence CCGG varied from zero to nearly full methylation, depending on the probe used, no differences were found between callus and leaf DNA. For the external cytosine, small differences were revealed between leaf and callus DNA with two probes, but no polymorphisms were detected among DNA samples of calli or DNA samples of leaves of regenerated plants. When callus DNA cut with HindIII was studied with one of the probes, H9D9, most of the signal was found in high-molecular-weight DNA, as opposed to control leaf DNA where almost all the signal was in a fragment of 530 bp. Also, an extra fragment of 630 bp was found in the callus DNA that was not present in control leaf DNA. Among leaves of plants regenerated from tissue culture, the 630-bp fragment was found in 10 of 68 regenerated plants. This 630-bp fragment was present among progeny of only 4 of these 10 plants after selfing, i.e. it was partly inherited. In these cases, the fragment was not found in all progeny plants, indicating heterozygosity of the regenerated plants. The data are interpreted as indicating that a HindIII site becomes methylated in callus tissue, and that some of this methylation persists in regenerated plants and is partly transmitted to their progeny.  相似文献   

3.
Summary Tissue culture of tall fescue (Festuca arundinacea Schreb., 2n=6x=42) would be enhanced by improving the callus induction and plant regeneration efficiency, and evaluating the meiotic and isozymic variation induced by culture. Mature embryos were cultured from four lines of Kenhy tall fescue and from the progeny of three selfed monosomics. Evaluation of six media-auxin combinations showed callus initiation was greatest on SH medium with 2.5 mg/l 2,4,5-T or 7.4 mg/l pCPA, while plant regeneration was greatest on SH medium with 0.5 mg/l 2,4-D. Cytological analyses of 27 plants derived from euploid parents showed a high frequency of aneuploidy (15/27). Chromosome numbers of aneuploids ranged from 36 to 41, with one plant having 80 chromosomes and two plants being asynaptic. Two of ten monosomic-derived plants were euploid, five were monosomic, one was monosomic with a fragment and two were double monosomic. Zymograms of the parents and regenerants were obtained for the enzymes ACPH, ADH, GOT, 6-PGD and PGI. Isozyme variation was observed for two groups of plants derived from the same Kenhy embryos. One group of four monosomic-derived plants differed for the enzymes GOT and ACPH, and all four plants had a PGI pattern. different from that of the parental monosomic plant. This indicated loss of a PGI allele, probably as a result of callus culture.Contribution No. 89-3-141 of the Kentucky Agricultural Experiment Station in cooperation with the USDA-ARS. Part of thesis research for senior author's M. S. degree  相似文献   

4.
 Red clover genotypes capable of regenerating plantlets in vitro from non-meristematic tissue-derived callus are rare. Selection for genotypes capable of somatic embryogenesis identified a clone comprised of a group of plantlets regenerated from a hypocotyl-derived callus culture on L2-based media and another group of plantlets originating from crown divisions of the epicotyl-derived plant. The callus-derived plants of this clone were highly regenerative when reintroduced to callus culture, but the epicotyl-derived plants produced nonregenerative callus cultures. F1, F2 and BC1 populations were evaluated to determine the mode of inheritance of the regeneration trait. Reciprocal crosses did not differ, indicating a lack of maternal effects. Results were compatible with genetic control of regeneration by two complementary genes. We propose the genotype Rn1-Rn2- for regenerative plants. Three petiole segment explants were sufficient to evaluate regenerative ability in seedlings. Regenerative ability was often associated with abnormal leaf morphology in a few to several leaves. Received: 17 February 1998 / Accepted: 7 April 1998  相似文献   

5.
In this work we show how three types of cucumber in vitro cultures – leaf callus culture, cytokinin dependent cell suspension and liquid culture of meristematic clumps – influence the metabolite profiles of plants in the first generative progeny. Based on this study we conclude that there exists a specific and inheritable metabolic fingerprint reflecting the history of previous generations, probably related to specific stress factors accompanying the passage through different types of culture. The leaf callus culture generated the highest heritable differences in metabolite content and was the most distinctly separated cluster in PCA analysis. The smallest number of variable metabolites characterizes the plants regenerated from cytokinin dependent cell suspension whereas the liquid culture of meristematic clumps induced slightly more changes. Changes induced by these two culture types were not as pronounced as in the case of leaf callus culture. However the plants after these types of culture were well separated from the control on PCA diagram. The highest changes were over 2-fold increases in cystin and galactose-6-P and over 2-fold decreases in aspartate, myo-inositol, hydroxylamine, phosphate and putrescine. These changes concerned the plants, which were one generation after the leaf callus culture. The possible nature of observed heritable changes is discussed.  相似文献   

6.
Summary Genetic analysis was conducted on the qualitative and quantitative traits of sexual progeny derived from embryogenic cultures of two inbred lines of Pennisetum glaucum (L.) R. Br. (pearl millet). These lines included a genetically stable inbred of Tift 23 BE and a genetic marker line, derived from Tift 23BE, which bore qualitative genetic markers for a dominant purple plant trait (P) and two recessive traits, early flowering (e1) and yellow stripe (ys). Tissue culture regenerant populations (R0) and progeny populations (R1) produced from these plants by selfing showed no qualitative genetic variation when derived from the genetically stable inbred Tift 23BE. In contrast, stably inherited qualitative variation for a number of genetic markers was observed in R0, R1, and R2 progeny of the genetic marker line. In a population of 1,911 plants regenerated over a 12-month period, 0.02% of the population lost or showed reduced expression of the purple plant trait and 92% of plants were chlorophyll deficient. Plants showing reduction or loss of anthocyanin synthesis also flowered later. None of the purple plants showed any significant variation in flowering time. The incidence of chlorophyll deficiency increased with time in culture, 51 % of the progeny regenerated after 1 month were chlorophyll deficient, while 100% of the plants regnerated after 12 months were chlorophyll deficient. Qualitative variation was also observed in control populations of the genetic marker line where 1 plant in a total of 1,010 lacked purple pigmentation and a total of 6% showed chlorophyll variation in the first generation (S0). The presence of qualitative variation in controls suggests that the inherent variation present in the original explant was expressed and perpetuated in vitro. Quantitative variation was observed for a number of traits in the first sexual cycle (R1) of the marker line but did not occur in a subsequent generation, suggesting that this variation was epigenetic.  相似文献   

7.
Summary A population of open-pollinated progeny from 12 parents, and the 12 parents, was surveyed for in vitro growth and regeneration characteristics. Four different tissue culture procedures involving different media and the use of different explants to initiate the cultures were used. Petiole explants from young leaves were used as explants for initiation of callus cultures. These were evaluated for callus growth rate, friability, and callus color and texture, before transferring to each of three different regeneration media for evaluation of morphogenetic potential. Small shoot tips also were used to initiate callus cultures, which were evaluated for the same growth characteristics and transferred to growth-regulator free regeneration media. Regeneration occurred through root or shoot regeneration or through embryogenesis. Tissue culture treatment effects, as well as genotypic effects, were highly significant in determining: the types of callus produced, callus growth rates, color and texture on the two types of media used for the second and third subcultures. The family x treatment interaction was generally not statistically significant, affecting only callus color. Estimates of narrow sense heritability for callus growth rate in both the second and third subcultures were high enough (0.35 and 0.63, respectively) for the evaluation of parental lines for selection procedures. These characteristics were also the only early culture callus traits that were consistently correlated with later morphogenesis of the cultures. They were negatively correlated with root or shoot regeneration. The occurence of somatic embryogenesis was not correlated with early callus growth characteristics. Genetic and treatment effects were highly significant in the evaluation of morphogenetic potential, through root or shoot regeneration, or through embryogenesis. Regeneration of all types was of low frequency for all procedures, expressed in 11% of the cultures of the total population.Paper No. 9906 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601, USA. From a thesis submitted by the senior in partial fulfillment of the requirements for the Ph.D. degree  相似文献   

8.
The effect of plant growth regulator concentrations and ageing of callus on the extent and nature of variation among callus culture regenerants of strawberry (Fragaria × ananassa) cv. Redcoat was examined. Plants regenerated from callus culture had reduced plant vigour, shorter petiole length and smaller leaf size, but more leaves and runners under greenhouse conditions. These responses appeared to be due to a physiological influence of plant growth regulators. No distinct phenotypic variants were observed at plant growth regulator concentrations in the range of 1–10 M each of BA and 2,4-d combination, but the highest concentration (20 M each) of this combination produced a high frequency (10%) of dwarf type variants. The dwarf nature of these variants was maintained in the runner plants produced by the primary regenerants. The plants regenerated from 8-week-old calli did not show any distinct morphological variants. However, a significant proportion of deformed leaf shape (6–13%) and yellow leaf (21–29%) variants was obtained among plants regenerated from 16 and 24-week-old calli. The primary regenerants of the leaf shape variants were established as chimeras. The chimeric plants produced runner progeny with normal plants and plants with completely distorted leaf morphology. Both leaf shape and yellow leaf variants remained stable through runner propagation. Isozyme analysis failed to distinguish any of the variants from the standard runner plants. Flow cytometric analysis indicated the aneuploid nature of leaf shape variants but it could not distinguish dwarf and yellow leaf variants from standard runner plants.  相似文献   

9.
Hybrids between Aegilops kotschyi and Ae. biuncialis with Secale cereale were synthesized. Five Ae. kotschyi and four Ae. biuncialis accessions, as well as one inbred and four self-compatible forms of Secale cereale were used for crossing. The hybrids were produced directly from cultured embryos or through embryo callus culture. Sixty hybrids, 11 involving Ae. kotschyi and 49 Ae. biuncialis, had a stable somatic chromosome number 2n = 3x = 21. The plants showed good vegetative vigour and tillering capacity. Morphologically the hybrids were intermediate between their parents and completely sterile. In vitro propagation of Ae. kotschyi and Ae. biuncialis x S. cereale hybrids revealed that their capacity for callus production and plantlet regeneration - varies.  相似文献   

10.
Doubled haploid (DH) genotypes from a genetic mapping population of Brassica oleracea were screened for ease of transformation. Candidate genotypes were selected based on prior knowledge of three phenotypic markers: susceptibility to Agrobacterium tumefaciens, shoot regeneration potential and mode of shoot regeneration. Mode of regeneration was found to be the most significant of the three factors. Transgenic plants were successfully obtained from genotypes that regenerated multiple shoots via a distinct swelling or callus phase. The absence of tissue culture blackening (associated with genotypes that formed callus) was found to be critical for transformation success. Transgenic shoots were obtained from genotypes that regenerated via an indirect callus mode, even when susceptibility to Agrobacterium was low. The most efficient genotype (DH AG1012) produced transgenic shoots at an average rate of 15% (percentage of inoculated explants giving rise to transgenic plants). The speed and efficiency of regeneration enabled the isolation of transgenic shoots 5–6 weeks after inoculation with A. tumefaciens. This line was also self-compatible, enabling the production of seed without the need for hand-pollination. A genetically uniform DH genotype, with an associated genetic map, make DH AG1012 highly desirable as a potential model B. oleracea genotype for studying gene function. The possibility of applying the same phenotypic tissue culture markers to other Brassica species is discussed.  相似文献   

11.
Amphiploids (2n = 6x = 42) of Ae. kotschyi and Ae. biuncialis with self-compatible S. cereale were produced from F1 sterile hybrids (2n = 3x = 21) through colchicine treatment and callus tissue regeneration. The amphiploids resembled the F1 plants in overall morphology, but were larger in all respects and self-fertile. The spikelets consisted mostly of 3 well-developed florets. Selfed seeds were obtained from some colchicine-doubled sectors and callus regenerates. Most of the produced seeds were well developed. Backcrosses between amphiploids and rye (2x and 4x) resulted in obtaining (Ae. biuncialis x S. cereale amphiploid) x S. cereale hybrids via embryo culture. The BC1 plants (2n = 4x = 28 and 2n = 5x = 35, respectively) were phenotypically intermediate between the parents and vigorous in vegetative growth. Some seeds were obtained only from the 35-chromosome BC1 hybrids.  相似文献   

12.
Summary An analysis of the progeny of primary transgenic pea plants in terms of transmission of the transferred DNA, fertility and morphology is presented. A transformation system developed for pea that allows the regeneration of fertile transgenic pea plants from calli selected for antibiotic resistance was used. Expiants from axenic shoot cultures were co-cultivated with a nononcogenic Agrobacterium tumefaciens strain carrying a gene encoding hygromycin phosphotransferase as selectable marker, and transformed callus could be selected on callus-inducing media containing 15 mg/l hygromycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on the hygromycin resistant calli, and the regenerated shoots could subsequently be rooted and transferred to the greenhouse, where they proceeded to flower and set seed. The transmission of the introduced gene into the progeny of the regenerated transgenic plants was studied over two generations, and stable transmission was shown to take place. The transgenic nature of the calli and regenerated plants and their progeny was confirmed by DNA and RNA analysis. The DNA and ploidy levels of the progeny plants and primary regenerants were studied by chromosome analysis, and the offspring of the primary transformants were evaluated morphologically.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - BA 6-ben-zyladenine - hpt hygromycin phosphotransferase gene - IAA indole acetic acid, kin, kinetin - NAA -naphtalene acetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

13.
Summary The wild species Solanum integrifolium represents a source of pest and disease resistance genes for breeding strategies of the cultivated species Solanum melongena. Somatic hybridization via protoplast fusion between the two species may provide a valuable tool for transferring polygenic traits into the cultivated species. The availability of S.integrifolium cells carrying dominant selectable markers would facilitate the heterokaryon rescue. An appropriate methodology for in vitro culture and plant regeneration from leaf explants of S.integrifolium is reported. Efficient leaf-disk transformation via co-cultivation with Agrobacterium tumefaciens led to the regeneration of transformed plants carrying the reporter genes GUS and NPT-II. Transformed individuals were obtained through selection on kanamycin-containing medium. Stable genetic transformation was assessed by histochemical and enzymatic assays for GUS and NPT-II activity, by the ability of leaf disks to initiate callus on Km-containing medium, Southern blot analyses of the regenerated plants, and genetic analysis of their progenies. Selfed-seed progeny of individual transformed plants segregated seedlings capable to root and grow in selective condition, while untransformed progeny did not. Genetic analyses of progeny behaviour showed that the reporter gene NPT-II segregated as single as well as two independent Mendelian factors. In two cases an excess of kanamycin-sensitive seedlings was obtained, not fitting into any genetic hypothesis.Abbreviations MS Murashige and Skoog (1962) medium - NOS nopaline synthase - NPT-II neomycin phosphotransferase - GUS beta-glucuronidase - LB Luria and Bertani medium - KIN 6-furfurylaminopurine - BAP 6-benzylaminopurine - 2iP N6-(2-isopentyl)adenine - ZEA zeatin - TDZ Thidiazuron  相似文献   

14.
In the summer of 1983, immature embryos from 101 selfed inbred lines and germplasm stocks of Zea mays L. were examined for their ability to produce callus cultures capable of plant regeneration (regenerable cultures) using a medium with which some limited success had previously been obtained. Forty-nine of the genotypes (49%) produced callus which visually appeared similar to callus previously cultured and shown to be capable of plant regeneration. After five months, 38 of these genotypes were alive in culture and plants were subsequently regenerated from 35 (92%) of them. No correlation was observed between plant regeneration and callus growth rate, the vivipary mutation (genes vp1, 2, 5, 7, 8 and 9), or published vigor ratings based on K+ uptake by roots. When F1 hybrid embryos were cultured, 97% of the hybrids having at least one regenerable parent also produced callus capable of plant regeneration. No regenerable cultures were obtained from any hybrid lacking a parent capable of producing a regenerable callus culture.In the summer of 1984, immature embryos from 218 additional inbred lines and germplasm stocks were plated and examined for their ability to produce regenerable callus cultures on media containing altered micronutrient concentrations, 3,6-dichloro-o-anisic acid (dicamba), glucose, and elevated levels of vitamin-free casamino acids and thiamine. Of these genotypes 199 (91%) produced callus that was regenerable in appearance. In the 1984 study, plant regeneration was noted in many commercially important inbreds, including B73, Mo17, B84, A632, A634, Ms71, W117, H993H95 and Cm105. Thus tissue-culture techniques are now available to obtain callus cultures capable of plant regeneration from immature embryos of most maize genotypes.Abbreviations trade names 2,4-D 2,4-dichlorophenoxyacetic acid - dicamba 3,6-dichloro-o-anisic acid  相似文献   

15.
For tenBlandfordia grandiflora populations spanning about 90% of the species' range, univariate and multivariate analyses on 14 vegetative and reproductive characters separated plants into distinct coastal and tableland groups. Distinguishing characters were number of flowers and leaves, leaf length and width, and inflorescence stalk height and diameter; coastal plants were larger than tableland plants. In a transplant experiment, coastal and tableland plants retained their phenotypic distinctness, indicating that vegetative morphology was genetically determined. Coastal plants exhibited clinal variation with latitude. Compared to tableland plants, coastal plants had higher pollen: ovule ratios, and produced fewer but heavier seeds per flower. Tableland and coastal plants are phenotypically distinct, indicating that separate subspecific status is warranted.  相似文献   

16.
Cell suspensions derived from immature leaves of the groundnut (Arachis hypogaea L.) were cultured in the presence and absence ofCercosporidium personatum pathotoxic culture filtrates. Cell viability and reactions of cell lines were determined after exposure to various concentrations (25–100%, v/v) of the filtrates. Cell lines have been selected for resistance to the toxin(s) produced byC. personatum. Selected cell lines were used for plant regeneration on regeneration media containingC. personatum culture filtrates. Plant regeneration frequency was found to be low in long-term cultures, whereas it was high in short-term cultures. The selfed progeny of the plants regenerated from the resistant cell lines showed resistance to the pathogen in the field. Six out of 82 plants exhibited enhanced resistance in the R2 generation. The culture filtrate stimulated callus proliferation as well as plant regeneration at lower concentrations, a response that could prove to be very useful for obtaining disease resistant plants throughin vitro selection.  相似文献   

17.
An improved regeneration protocol suitable for transformation of sorghum was developed. The improvements focused on limiting the production of phenolic compounds and the use of suitable culture vessels for each developmental stage in plant regeneration from immature embryo derived calli. The addition of activated charcoal in the callus induction medium reduced the production of black pigments, however it also inhibited the callus formation on immature embryo explants. Cold pre-treatment of the immature seeds from which embryo explants were excised had a positive effect on both explant survival and callus formation. A one-day 4°C treatment of immature seeds significantly improved the callus formation from immature embryos and reduced the need for frequent subculture. Petri dishes with ventilation were suitable for the callus induction phase, but not for plant regeneration. Regeneration of plants could be improved by using disposal plastic boxes (250 ml volume) instead of Petri dishes. Agrobacterium-mediated transformation using the improved regeneration protocol and the hygromycin phosphotransferase gene as selectable marker resulted in the recovery of 15 transgenic plants from 300 initial immature embryos (5% efficiency). The transgenic nature of the obtained plants was demonstrated by Southern hybridisation and progeny analysis. The transgenes were inherited in a Mendelian fashion and were integrated at a single locus in the majority of the analysed lines.  相似文献   

18.
Machii  H.  Mizuno  H.  Hirabayashi  T.  Li  H.  Hagio  T. 《Plant Cell, Tissue and Organ Culture》1998,53(1):67-74
Plant regeneration via tissue culture varies with the genotype and is an important factor in establishing cell selection and genetic transformation systems. To select genotypes – especially Japanese ones – with a high regeneration capability, we screened 107 wheat genotypes (78 domestic, 29 foreign) for callus induction and regeneration capability from anther and immature embryo cultures. For anther culture, 83 of 107 genotypes tested induced calli and 45 regenerated plants. Only 9 genotypes, however, produced green plants, 25 produced only albino plants, and 11 produced both green and albino plants. Glennson 81 was the highest in callus induction, followed by Orofen, Danchi–komugi and Chris. The genotypes with a relatively high regeneration capability were Framala 80 at 24% and Glennson 81 at 19%, these two genotypes produced only green plants. For immature embryo culture, 97 genotypes showed a 90% callus induction rate and 74 genotypes regenerated plants. Very few genotypes produced albino plants. The genotypes with a high regeneration capability were Genaro 81 at 90%, Chinese Spring at 80%, and Norin 75 at 75%. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Summary A plasmid containing two marker genes for expression in plants was constructed. This 16 kb vector, pCT1T3, contains an intact nopaline synthase gene and a chimaeric gene consisting of the promoter and terminator regions from cauliflower mosaic virus gene VI and a structural gene, aminoglycoside phosphotransferase (APH(3′)II), from the bacterial transposon Tn5. After transformation of tobacco mesophyll protoplasts with this plasmid, several kanamycin-resistant transformants were obtained. Intensive studies on the drug tolerance of growth and differentiation of the transformants showed that the chimaeric gene was stably expressed. Of 17 independent transformants, 3 (about 18%) expressed the two marker genes, regardless of the state of differentiation, as did individual plants regenerated from the same callus. Multiple copies of the inserted DNA were found in some transformants. Viable seeds were produced by 12 out of 15 independent transformants. Seeds obtained by self-pollination were germinated on medium containing kanamycin sulphate. With the exception of one clone, resistant seedlings with green leaves and sensitive seedlings with white leaves were found to segregate in a 3:1 ratio. This suggests that the inheritance of the inserted gene is Mendelian. A reciprocal cross between the transformants and wild-type tobacco also showed nuclear transmission of the APH(3′)II gene. This was consistently maintained in a subclone of the same transformant derived from the same callus line. Stable inheritance of the single dominant character was also seen among seeds formed in several different flower pods of the same individual plants. Two clones were also found to synthesize nopaline in addition to expressing APH(3′)II. Analysis of the progeny obtained by self-crosses of such transformants revealed the simultaneous expression of these two enzymes, indicating that the two marker genes are linked on the same chromosome.  相似文献   

20.
Summary Somatic hybrid plants, produced between Nicotiana rustica and N. tabacum by heterokaryon isolation and culture and also by mutant complementation, were examined regarding their ability to set seed. From a total of seventeen independent somatic hybrids, three were found to be partially self-fertile while the others did not set seed. Differences regarding the methods of hybrid selection, parental varieties and chloroplast composition of hybrids did not appear to be significant regarding the ability of plants to set seed. Much variation in fertility was observed in subsequent generations and by recurrent selection of the most fertile, over two generations, it was possible to increase the level of self-fertility in some of the progeny. One R2 derivative possessed approximately a tenfold higher level of self-fertility than it's somatic hybrid parent. The presence of genetic markers from both parents were observed in all progeny indicating their hybrid nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号