共查询到20条相似文献,搜索用时 0 毫秒
1.
The year 2018 marks the 150th anniversary of the first publication of Julius von Sachs' (1832–1897) Lehrbuch der Botanik (Textbook of Botany), which provided a comprehensive summary of what was then known about the plant sciences. Three years earlier, in 1865, Sachs produced the equally impressive Handbuch der Experimental‐Physiologie der Pflanzen (Handbook of Experimental Plant Physiology), which summarized the state of knowledge in all aspects of the discipline known today as plant physiology. Both of these books provided numerous insights based on Sachs' seminal experiments. By virtue of a reliance on detailed empirical observation and the rigorous application of chemical and physical principles, it is fair to say that the publication of these two monumental works marked the beginning of what can be called “modern‐day” plant science. Moreover, Sachs' Lehrbuch der Botanik prefigured the ascendance of plant molecular biology and the systems biology of photoautotrophic organisms. Regrettably, many of the insights of this great scientist have been forgotten by the generations who followed. It is only fitting, therefore, that the anniversary of the publication of the Lehrbuch der Botanik and the career of “the father of plant physiology” should be honored and reviewed, particularly because Sachs established the physiology of green organisms as an integral branch of botany and incorporated a Darwinian perspective into plant biology. Here we highlight key insights, with particular emphasis on Sachs' detailed discussion of sexual reproduction at the cellular level and his endorsement of Darwinian evolution. 相似文献
2.
In 1865, the German botanist Julius Sachs published a seminal monograph entitled Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) and hence became the founder of a new scientific discipline that originated 150 y ago. Here, we outline the significance of the achievements of Sachs. In addition, we document, with reference to his Vorlesungen über Pflanzen-Physiologie (Lectures on the Physiology of Plants, 1882), that Sachs was one of the first experimentalists who proposed the functional unity of all organisms alive today (humans, animals, plants and other “vegetable” organisms, such as algae, cyanophyceae, fungi, myxomycetes, and bacteria). 相似文献
3.
Ulrich Kutschera 《Plant signaling & behavior》2015,10(9)
The German biologist Julius Sachs was the first to introduce controlled, accurate, quantitative experimentation into the botanical sciences, and is regarded as the founder of modern plant physiology. His seminal monograph Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) was published 150 y ago (1865), when Sachs was employed as a lecturer at the Agricultural Academy in Poppelsdorf/Bonn (now part of the University). This book marks the beginning of a new era of basic and applied plant science. In this contribution, I summarize the achievements of Sachs and outline his lasting legacy. In addition, I show that Sachs was one of the first biologists who integrated bacteria, which he considered to be descendants of fungi, into the botanical sciences and discussed their interaction with land plants (degradation of wood etc.). This “plant-microbe-view” of green organisms was extended and elaborated by the laboratory botanist Wilhelm Pfeffer (1845–1920), so that the term “Sachs-Pfeffer-Principle of Experimental Plant Research” appears to be appropriate to characterize this novel way of performing scientific studies on green, photoautotrophic organisms (embryophytes, algae, cyanobacteria). 相似文献
4.
5.
Charles Darwin's correspondence with David Moore of Glasnevin on insectivorous plants and potatoes 总被引:1,自引:0,他引:1
E. CHARLES NELSON F.L.S. MARK. R. D. SEAWARD F.L.S. 《Biological journal of the Linnean Society. Linnean Society of London》1981,15(2):157-164
Recently discovered correspondence between Charles Darwin and David Moore shows the latter's role in providing fresh material of importance to Darwin's studies on insectivorous plants. One letter relates to Moore's experimental work on potatoes. This research, probably concerned with resistance of selected varieties of potato to blight, is apparently not supported by Glasnevin Botanic Garden (Dublin) records or contemporary literature. 相似文献
6.
7.
改革植物生物学实验教学模式的探索与实践 总被引:3,自引:0,他引:3
植物生物学实验课是本科教学的重要内容。从植物生物学实验课的特点出发,在实验模块的选择、实验教学的方式和实验课要求等方面进行了改革尝试,在提高实验教学效果及加强学生动手能力方面发挥了较好的作用。 相似文献
8.
Quackenbush J 《Animal genetics》2006,37(Z1):48-56
Technologies that have emerged from the genome project have dramatically increased our ability to generate data on the way in which organisms respond to their environments, how they execute their programmes of development and growth, and how these are altered in the development of disease states. However, our ability to analyse these large datasets has not kept pace with our ability to generate them and consequently new strategies must be developed to address the issues associated with their analysis. One approach that we have employed quite successfully is to look at data from microarrays (or proteomics or metabolomics experiments) not as independent datasets, but rather as elements of a much larger body of biological information across various scales that must be integrated with, and interpreted within, the context of such ancillary data. Here we outline the general approach and provide three examples from published studies of the way in which we have applied this strategy. 相似文献
9.
J. Quackenbush 《Animal genetics》2006,37(S1):48-56
Technologies that have emerged from the genome project have dramatically increased our ability to generate data on the way in which organisms respond to their environments, how they execute their programmes of development and growth, and how these are altered in the development of disease states. However, our ability to analyse these large datasets has not kept pace with our ability to generate them and consequently new strategies must be developed to address the issues associated with their analysis. One approach that we have employed quite successfully is to look at data from microarrays (or proteomics or metabolomics experiments) not as independent datasets, but rather as elements of a much larger body of biological information across various scales that must be integrated with, and interpreted within, the context of such ancillary data. Here we outline the general approach and provide three examples from published studies of the way in which we have applied this strategy. 相似文献
10.
植物衰老期间生理生化变化的研究进展 总被引:15,自引:0,他引:15
植物衰老是受内外因素控制的细胞有序降解并最终导致死亡的过程,衰老期间会出现与正常生长阶段不同的生理生化变化。植物衰老引起的各种功能的下降极大地限制了作物产量潜力的发挥,种子贮存过程中的衰变、逆境条件下植株的早衰、果蔬采后贮藏衰老导致货架寿命的缩短等均会造成极大的经济损失。研究植物衰老的生理机制及其调控具有十分重要的意义。综述了有关植物衰老时生理生化变化方面的近期研究进展,以利于人们对植物衰老生理的更深入的了解。 相似文献
11.
12.
13.
论述了贝塔朗菲的一般系统论的思想起源、主要内容,基于一般系统论的系统生物学的产生、研究思路和方法,阐述了生物学由还原论的研究方法过渡到系统论的研究方法,以及系统生物学未来的发展进行了评价。 相似文献
14.
Jens Nielsen 《FEBS letters》2009,583(24):3905-3913
Lipid metabolism is highly relevant as it plays a central role in a number of human diseases. Due to the highly interactive structure of lipid metabolism and its regulation, it is necessary to apply a holistic approach, and systems biology is therefore well suited for integrated analysis of lipid metabolism. In this paper it is demonstrated that the yeast Saccharomyces cerevisiae serves as an excellent model organism for studying the regulation of lipid metabolism in eukaryotes as most of the regulatory structures in this part of the metabolism are conserved between yeast and mammals. Hereby yeast systems biology can assist to improve our understanding of how lipid metabolism is regulated. 相似文献
15.
Stomatal biology: new techniques, new challenges 总被引:6,自引:1,他引:6
16.
Revealing mechanisms underlying complex diseases poses great challenges to biologists. The traditional linkage and linkage disequilibrium analysis that have been successful in the identification of genes responsible for Mendelian traits, however, have not led to similar success in discovering genes influencing the development of complex diseases. Emerging functional genomic and proteomic ('omic') resources and technologies provide great opportunities to develop new methods for systematic identification of genes underlying complex diseases. In this report, we propose a systems biology approach, which integrates omic data, to find genes responsible for complex diseases. This approach consists of five steps: (1) generate a set of candidate genes using gene-gene interaction data sets; (2) reconstruct a genetic network with the set of candidate genes from gene expression data; (3) identify differentially regulated genes between normal and abnormal samples in the network; (4) validate regulatory relationship between the genes in the network by perturbing the network using RNAi and monitoring the response using RT-PCR; and (5) genotype the differentially regulated genes and test their association with the diseases by direct association studies. To prove the concept in principle, the proposed approach is applied to genetic studies of the autoimmune disease scleroderma or systemic sclerosis. 相似文献
17.
A new study in this issue of Genome Biology sheds light on why some pseudogenes persist in rodent, and other mammalian, genomes. Please see related Research article by Marques et al http://genomebiology.com/2012/13/11/R102 相似文献
18.
19.
Marina Pais Joe Win Kentaro Yoshida Graham J Etherington Liliana M Cano Sylvain Raffaele Mark J Banfield Alex Jones Sophien Kamoun Diane GO Saunders 《Genome biology》2013,14(6):211
Recent pathogenomic research on plant parasitic oomycete effector function and plant host responses has resulted in major conceptual advances in plant pathology, which has been possible thanks to the availability of genome sequences. 相似文献
20.
Symmetries play a major role in physics, in particular since the work by E. Noether and H. Weyl in the first half of last century. Herein, we briefly review their role by recalling how symmetry changes allow to conceptually move from classical to relativistic and quantum physics. We then introduce our ongoing theoretical analysis in biology and show that symmetries play a radically different role in this discipline, when compared to those in current physics. By this comparison, we stress that symmetries must be understood in relation to conservation and stability properties, as represented in the theories. We posit that the dynamics of biological organisms, in their various levels of organization, are not “just” processes, but permanent (extended, in our terminology) critical transitions and, thus, symmetry changes. Within the limits of a relative structural stability (or interval of viability), variability is at the core of these transitions. 相似文献