首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
TNF-alpha, inducible NO synthase (iNOS), and ICAM-1 are considered to be key proteins in the inflammatory response of most tissues. We tested the hypothesis that cell walls of Streptococcus pneumoniae (PCW), the most common cause of adult bacterial meningitis, induce TNF-alpha, iNOS, and ICAM-1 expression in rat primary brain microvascular endothelial cell cultures. We detected TNF-alpha mRNA by RT-PCR already 1 h after stimulation with PCW, while TNF-alpha protein peaked at 4 h (9.4 +/- 3.6 vs 0.1 +/- 0.1 pg/microgram protein). PCW induced iNOS mRNA 2 h after stimulation, followed by an increase of the NO degradation product nitrite (18.1 +/- 4 vs 5.8 +/- 1.8 at 12 h; 18.1 +/- 4 vs 5.8 +/- 1.8 pmol/microgram protein at 72 h). The addition of TNF-alpha Ab significantly reduced nitrite production to 62.2 +/- 14.4% compared with PCW-stimulated brain microvascular endothelial cells (100%). PCW induced the expression of ICAM-1 (measured by FACS), which was completely blocked by TNF-alpha Ab (142 +/- 18.6 vs 97.5 +/- 12.4%; 100% unstimulated brain microvascular endothelial cells). Cerebral endothelial cells express TNF-alpha mRNA as well as iNOS mRNA and release the bioactive proteins in response to PCW. PCW-induced NO production is mediated in part by an autocrine pathway involving TNF-alpha, whereas ICAM-1 expression is completely mediated by this autocrine loop. By these mechanisms, cerebral endothelial cells may regulate critical steps in inflammatory blood-brain-barrier disruption of bacterial meningitis.  相似文献   

6.
Caffeic acid phenethyl ester has been shown to have anti-inflammatory and anti-cancer effects. We examined the effects of caffeic acid phenethyl ester on lipopolysaccharide-induced production of nitric oxide and prostaglandin E(2), and expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophages. We also investigated the effects of caffeic acid phenethyl ester on lipopolysaccharide-induced septic shock in mice. Our results indicate that caffeic acid phenethyl ester inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production in a concentration-dependent manner and inhibits inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells, without significant cytotoxicity. To further examine the mechanism responsible for the inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by caffeic acid phenethyl ester, we examined the effect of caffeic acid phenethyl ester on lipopolysaccharide-induced nuclear factor-kappaB activation and the phosphorylation of mitogen-activated protein kinases. Caffeic acid phenethyl ester treatment significantly reduced nuclear factor-kappaB translocation and DNA-binding in lipopolysaccharide-stimulated RAW 264.7 cells. This effect was mediated through the inhibition of the degradation of inhibitor kappaB and by inhibition of both p38 mitogen-activated protein kinase and extracellular signal-regulated kinase phosphorylation, at least in part by inhibiting the generation of reactive oxygen species. Furthermore, caffeic acid phenethyl ester rescued C57BL/6 mice from lethal lipopolysaccharide-induced septic shock, while decreasing serum levels of tumor necrosis factor-alpha and interleukin-1beta. Collectively, these results suggest that caffeic acid phenethyl ester suppresses the induction of cytokines by lipopolysaccharide, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression, by blocking nuclear factor-kappaB and p38/ERK activation. These findings provide mechanistic insights into the anti-inflammatory and chemopreventive actions of caffeic acid phenethyl ester in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号