首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Expression of many nitrogen catabolic enzymes is controlled by nitrogen metabolite repression in Aspergillus nidulans. Although the phenotypes of tamA mutants have implicated this gene in nitrogen regulation, its function is unknown. We have cloned the tamA gene by complementation of a new tamA allele. The tamA sequence shares significant homology with the UGA35/DAL81/DURL gene of Saccharomyces cerevisiae. In vitro mutagenesis of sequences encoding a putative zinc cluster DNA binding domain indicated that this motif is not required for in vivo TamA function.  相似文献   

3.
4.
Expression of the DAL2, DAL4, DAL7, DUR1,2, and DUR3 genes in S. cerevisiae is induced by allophanate, the last intermediate in the allantoin catabolic pathway. Analysis of the DAL7 promoter identified a dodecanucleotide, the DAL7 UIS, which was required for inducer-responsiveness. Operation of the DAL7 UIS required functional DAL81 and DAL82 gene products. Since the DAL81 product was not an allantoin pathway-specific regulatory factor, the DAL82 product was considered as the more likely candidate to be the DAL UIS binding protein. Using an E. coli expression system, we showed that DAL82 protein specifically bound to wild type but not mutant DAL UIS sequences. DNA fragments containing DAL UIS elements derived from various DAL gene promoters bound DAL82 protein with different affinities which correlate with the degree of inducer-responsiveness the genes displayed.  相似文献   

5.
6.
7.
Escherichia coli CopA is a copper ion-translocating P-type ATPase that confers copper resistance. CopA formed a phosphorylated intermediate with [gamma-(32)P]ATP. Phosphorylation was inhibited by vanadate and sensitive to KOH and hydroxylamine, consistent with acylphosphate formation on conserved Asp-523. Phosphorylation required a monovalent cation, either Cu(I) or Ag(I). Divalent cations Cu(II), Zn(II), or Co(II) could not substitute, signifying that the substrate of this copper-translocating P-type ATPase is Cu(I) and not Cu(II). CopA purified from dodecylmaltoside-solubilized membranes similarly exhibited Cu(I)/Ag(I)-stimulated ATPase activity, with a K(m) for ATP of 0.5 mm. CopA has two N-terminal Cys(X)(2)Cys sequences, Gly-Leu-Ser-Cys(14)-Gly-His-Cys(17), and Gly-Met-Ser-Cys(110)-Ala-Ser-Cys(113), and a Cys(479)-Pro-Cys(481) motif in membrane-spanning segment six. The requirement of these cysteine residues was investigated by the effect of mutations and deletions. Mutants with substitutions of the N-terminal cysteines or deletion of the first Cys-(X)(2)-Cys motif formed acylphosphate intermediates. From the copper dependence of phosphoenzyme formation, the mutants appear to have 2-3 fold higher affinity for Cu(I) than wild type CopA. In contrast, substitutions in Cys(479) or Cys(481) resulted in loss of copper resistance, transport and phosphoenzyme formation. These results imply that the cysteine residues of the Cys-Pro-Cys motif (but not the N-terminal cysteine residues) are required for CopA function.  相似文献   

8.
9.
10.
11.
12.
The amdR (intA) regulatory gene of Aspergillus nidulans encodes a 765-amino-acid polypeptide which determines the omega-amino acid induction of at least five structural genes. The AmdR polypeptide contains a potential Zn(II)2Cys6 DNA-binding motif which has been shown to be present in the N-terminal region of a large number of fungal activator proteins. In vitro mutagenesis of the fourth cysteine of this motif abolishes AmdR function as shown by loss of complementation of an amdR- mutation and by the AmdR- phenotype of a mutant gene replacement strain. Studies using constructs in which the proposed AmdR DNA-binding motif is replaced with that from another activator, FacB, shows that induction is independent of DNA-binding specificity and that sequences in the C-terminal region of AmdR are activation domains. Sequencing of several amdR mutant alleles which affect activation and/or induction, together with studies of deletion constructs indicate that changes in the conformation of the protein determines its activity and that this is modulated by inducers.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号