首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vegetative microplasmodia of the slime mold, Physarum polycephalum, produce an intracellular β-N-acetylhexosaminidase enzyme when grown on a medium containing 1% glucose, 0.15% yeast extract, and 1% peptone. When early log-phase microplasmodia are induced to differentiate to spherules by starvation in a salts medium, they excrete an extracellular β-N-acetylhexosaminidase. Both of these enzymes have been purified to apparent homogeneity. Characterization studies showed that the extracellular enzyme was nonidentical to the preexisting, vegetative enzyme and the enzyme in completed spherules. Evidence demonstrating dissimilarities between the two proteins included marked differences in (i) specificities for several natural and synthetic substrates, (ii) various kinetic parameters, (iii) relative net charges as evidenced by different elution behavior from similar DE-52 cellulose chromatography columns, (iv) carbohydrate contents, and (v) subunit polypeptide molecular weights. Conclusive evidence for their nonidentity was shown in their respective amino acid compositions and divergent immunological properties. The extracellular β-N-acetylhexosaminidase demonstrated a subunit molecular weight of 25,300; the intracellular enzyme subunit molecular weight was 40,500. The extracellular enzyme, with the smaller polypeptide subunit, contained 1.79 times as many aromatic amino acid residues in tyrosine, phenylalanine, and tryptophan as the intracellular enzyme. Thus, the extracellular enzyme could not have been comprised of subunits derived from limited proteolytic hydrolysis of the larger subunits of the intracellular enzyme. Rabbit antisera prepared against each purified β-N-acetylhexosaminidase failed to yield precipitin bands with the heterologous antigen in immunodiffusion tests. Thus, apparently distinct structural genes code for these two enzymes and they may serve different, but unidentified, physiological functions.  相似文献   

2.
Macromolecular material from the slime layer of the cyanobacterium Microcystis flos-aquae C3-40 was defined as material that adhered to cells during centrifugation in growth medium but was dislodged by washing with deionized water and retained within dialysis tubing with a molecular-weight cutoff of 3,500. At each step of this isolation procedure, the slime was observed microscopically. Cells in the centrifugal pellet were surrounded by large amounts of slime that excluded negative stain, whereas cells that had been washed with water lacked visible slime. Two independently isolated lots of slime contained no detectable protein (<1%, wt/wt) and consisted predominantly of anthrone-reacting polysaccharide. Sugars in a hydrolysate of slime polysaccharide were derivatized with trimethylsilylimidazole and examined by gas chromatography-mass spectrometry. The composition of the slime polysaccharide was 1.5% (wt/wt) galactose, 2.0% glucose, 3.0% xylose, 5.0% mannose, 5.5% rhamnose, and 83% galacturonic acid. This composition resembles that of the plant polysaccharide pectin, which was treated in parallel as a control. Consistent with earlier indications that M. flos-aquae slime preferentially binds certain cations, the ratio of Fe to Na in the dialyzed slime was 104 times that in the growth medium. The composition of the slime is discussed with respect to possible mechanisms of cation binding in comparison with other cyanobacterial exopolysaccharides and pectin.  相似文献   

3.
The specific activity of uridine 5'-triphosphate:alpha-d-glucose 1-phosphate uridyltransferase (EC 2.7.7.9) (also called uridine 5'-diphosphate [UDP]-glucose pyrophosphorylase) has been found to increase up to eightfold during spherule formation by the slime mold Physarum polycephalum. The enzyme accumulates during the first 8 to 9 h after initiation of spherule formation, declines to basal levels found in vegetative microplasmodia by 15 h, and is undetectable in completed spherules. Specific activities for UDP-glucose pyrophosphorylase in vegetative microplasmodia range from 15 to 30 nmol of UDP-glucose formed per min per mg of protein, whereas accumulated levels during spherule formation can attain a specific activity as high as 125 nmol of UDP-glucose formed per min per mg of protein. The scheduling and extent of accumulation are critically dependent on an early log-phase age of microplasmodia originally induced to form spherules. Spherule induction by 0.2 M or 0.5 M mannitol delays this schedule in a variable and unpredictable manner. Spherule-forming microplasmodia which have accumulated high levels of UDP-glucose pyrophosphorylase spontaneously excrete the enzyme when transferred to salts medium containing 0.2 M or 0.5 M mannitol. The excreted enzyme is subsequently destroyed or inactivated. Studies with preferential inhibitors of macromolecular synthesis indicate that accumulation of UDP-glucose pyrophosphorylase requires concomitant protein synthesis and prior ribonucleic acid synthesis.  相似文献   

4.
A soluble cell fraction from exponentially growing microplasmodia of the slime mold, Physarum polycephalum, contains 12 electrophoretically distinguishable enzymes capable of hydrolyzing the aminopeptidase substrate, l-leucyl-2-naphthylamide (LNA) at pH 6.5. These enzymes appear to represent three distinct groups of LNA isoenzymes on the basis of electrophoretic mobilities, substrate ranges, and effects of divalent cations and of EDTA on peptidase activity. When spherulation is induced by transfer of microplasmodia to a starvation medium, there is a brief increase in one form of one of the enzymes followed by complete abolition of that enzyme group. These changes in the enzymatic profile occur within 4–5 h of transfer to a starvation medium, though spherules do not appear until 15–20 h later.  相似文献   

5.
In Physarum polycephalum, microplasmodia differentiated into spherules when cultures were aged for 8–10 days. Respiration rates of the microplasmodia decreased rapidly with ageing to a 90% decrease in oxygen consumption over 9 days. We studied this phenomena by isolating and characterizing mitochondria from microplasmodia and spherules at different stages of spherulation. Oxygen uptake by the isolated mitochondria decreased with spherulation. Morphological and biochemical analyses showed that mitochondrial differentiation to inactive state was characterized by a decrease not only in dimension but also of content (DNA, RNA and protein). Diminutive mitochondria contained small particle-shaped mitochondrial nuclei. The DNA content, measured by microscopic fluorometry, was about 1.15 and 0.58 × 10−10 g, which corresponded to about 16 and 8 genome copies, respectively (e.g., 32 genome copies per mitochondrion at mitochondrial G1). Restriction endonuclease analysis showed that the physical structure and methylation pattern of the mtDNA had not changed although the DNA content per mitochondrion had decreased remarkably with spherulation. This showed that changes in the ploidy level of the mitochondrial nucleus during spherulation were due to reduction in the number of whole mitochondrial genomes.  相似文献   

6.
The acellular slime mold Physarum polycephalum produces an extracellular sulfated and phosphorylated β-D-galactan which was recently isolated from the nuclei of this organism. This polysaccharide has now been localized in the nuclei ofP. polycephalum by electron microscopy using a specific “sandwich” technique: thin sections of P. polycephalum microplasmodia were incubated with the Ricinus communis lectin specific for D-galactose residues. The bound lectin was then localized with gold granules labeled with a galactose-terminated glycoprotein (desialylated ceruloplasmin). The galactin was found in the nuclei mainly associated with chromatin and, also, but to a smaller extent, in the cytoplasma and in some vacuoles. The specificity of the method was assessed by marking under the same condition the galactomannan present in the cell wall of the yeast Schizosaccharomyces pombe.  相似文献   

7.
Changes in the level of antioxidant defenses and the concentration of free radical by-products were examined in differentiating (M3cVII and LU897 X LU863), non-differentiating (LU887 X LU897), and heterokaryon microplasmodia of the slime mold Physarum polycephalum during spherulation in salts-only medium. As differentiation proceeded, superoxide dismutase activity increased by as much as 46 fold; glutathione concentration and the rate of oxygen consumption decreased; cyanide-resistant respiration, hydrogen peroxide, and organic peroxide concentrations increased. The non-differentiating culture failed to exhibit any of these changes. A heterokaryon obtained by the fusion of differentiating and non-differentiating strains was observed to differentiate at a very retarded rate and to exhibit the changes observed in the spherulating strains at a correspondingly slower rate. These observations suggest that a free radical mechanism may be involved in the differentiation of Physarum microplasmodia into spherules.  相似文献   

8.
K. V. Wolf  W. Stockem 《Protoplasma》1979,99(1-2):125-138
Summary The investigation of endocytotic processes in axenically cultured microplasmodia ofPhysarum polycephalum is considerably complicated by the development of an extensive cell membrane invagination system. Cross-sections through single channels of this system are difficult to distinguish from vacuoles formed endocytotically. Therefore the whole system was labelled by staining the extracellular slime with ruthenium red or lanthanum hydroxide. In this way endosomes produced during the incubation period could be clearly identified. Aerosil andThorotrast are suitable markers for food vacuoles because they can easily be detected with the electron microscope. The application of these substances revealed that submerged cultured microplasmodia are able to form endosomes which contain material of extracellular origin. However, the endocytotic uptake of food material is of much less intensity than in normal macroplasmodia. Microplasmodia seem to cover most of their requirements for metabolic substances by active trans-membrane transport.The intracellular digestive system of microplasmodia corresponds to the vacuolar apparatus of other cells. Preexisting lysosomes originating by autophagic processes play a central role in this system: They coalesce with endosomes or secondary lysosomes thus forming digestion vacuoles. Indigestible food components are extruded together withCa-containing granules into the cell surface invagination system by defecation. The physiological significance of theCa-granules is unknown.  相似文献   

9.
The peripheral root cap cells of corn (cv. SX-17A) secrete a fucose-rich, high molecular weight, polysaccharide slime via the dictyosome pathway. To study the synthesis of this polysaccharide, a technique for isolating and assaying GDP-fucose:polysaccharide fucosyl transferase activity was developed. Corn roots were excised from germinated seeds, incubated 12 hours at 10 C in water, and ground in 100 millimolar Tris or Pipes buffer (pH 7.0) with or without 0.5 molar sucrose. The membrane-bound enzyme was solubilized by sonication in the presence of 2 molar urea and 1.5% (v/v) Triton X-100 and assayed by monitoring the incorporation of GDP-[14C]fucose into endogenous acceptors. Optimum enzyme activity is expressed at pH 7.0 and 30 C in the presence of 0.8% (v/v) Triton X-100. The enzyme does not require divalent cations for activation and is inhibited by concentrations of MnCl2 or MgCl2 greater than 1 millimolar. Corn root cap slime will serve as an exogenous acceptor for the enzyme if it is first hydrolyzed in 5 millimolar trifluoroacetic acid for 60 minutes at 18 pounds per square inch, 121 C. This procedure prepares the acceptor by removing terminal fucose residues from the slime molecule. Kinetics of fucose release during hydrolysis of native slime and in vitro synthesized product suggests that the two polymers possess similar linkages to fucose.  相似文献   

10.
When actively growing microplasmodia of the lower eukaryote Physarum polycephalum are gently pelleted and allowed to stand at high plasmodial densities for 45 min, three specific nuclear acidic proteins undergo dramatic quantitative changes. Two major proteins of molecular weight 46 000 and 94 000 increase 110 and 320%, respectively. The increase in these two proteins is not markedly attenuated during periods when 88% total protein synthesis is blocked by cycloheximide, and the specific radioactivities of these proteins from prelabeled and continuously labeled control and pelleted plasmodia are essentially identical. A third protein of molecular weight 34 000 decreases by 51 % during the 45 min period and when cycloheximide is present, a 36% decrease in this protein still occurs. The rapid changes which occur in these three proteins in response to high plasmodial density also develop, together with many other changes, during plasmodial differentiation, but only after about 6 h of starvation. It is concluded that the rapid increase in the 46 000 and 94 000 mol. wt proteins results from protein transfer phenomena rather than de novo synthesis and that these proteins perhaps function in the early reorganization of cell metabolism rather than in structural differentiation. In further comparative studies it has been observed that mature spherules of P. polycephalum contain a major acidic protein not present in growing or differentiating plasmodia and also that the complement of residual acidic proteins differs in starvation-induced vs cold-induced spherules.  相似文献   

11.
The effects of experimentally-altered glutathione concentration on differentiation of the slime mold, Physarum polycephalum were examined. Spherulation was induced by transfer of Physarum from growth medium to a salts-only starvation medium. As differentiation proceeded, superoxide dismutase (SOD) activity in control cultures increased by as much as 21-fold. This increase in SOD activity paralleled the rate of differentiation. Glutathione (GSH) concentration decreased during differentiation by more than 80% in all cultures, regardless of the initial concentration. The rate of differentiation was inversely related to the initial GSH concentration and directly proportional to the SOD activity. These observations suggest that a free radical mechanism may be involved in the differentiation of Physarum microplasmodia into spherules.  相似文献   

12.
The host-specific phytotoxin victorin (HV-toxin) stimulates mesophyll protoplasts of susceptible but not of resistant oat (Avena sativa L.) to produce an amorphous, ethanol-insoluble extracellular material which stains with Calcofluor white and aniline blue. Over a 24-h period incorporation of [14C]glucose into ethanol-insoluble products is maximally stimulated by 60 pg victorin/ml, whereas at 6 ng/ml initial rates of incorporation are higher but the protoplasts collapse. The extracellular material produced in response to victorin is solubilized by cold 4.4 N NaOH and by commercial laminarinase and pectinase. Incorporation of [14C]glucose into cellulose (material resistant to Updegraff's acetic-nitric acid reagent) is stimulated as much as incorporation into other wall polysaccharides, but cellulose constitutes less than 15% of the total victorin-stimulated incorporation. Synthesis of ethanol-insoluble material that can be digested by pronase, i.e. protein, is inhibited by victorin above 60 pg victorin/ml. Formation of extracellular polysaccharide is stimulated at concentrations of victorin which cause almost complete inhibition of protein synthesis, indicating that de-novo protein synthesis is not involved. Preincubation of protoplasts with inhibitors of RNA or protein synthesis prevents both extracellular polysaccharide synthesis and cell death in response to victorin. Although previous studies have indicated a link between calcium and the action of victorin, several compounds which interact with calcium do not influence this response to victorin.Abbreviations EPS extracellular polysaccharide - SCM 0.5 M sorbitol +10 mM CaCl2+5 mM 2-(N-morpholino)-ethanesulfonic acid (Mes), pH 5.8 This paper is dedicated to the memory of our teacher and colleague, Martin H. Zimmermann (1926–1984)  相似文献   

13.
Summary An extracellular polysaccharide composed of glucose, fucose, arabinose and glucuronic acid in a molar proportion of 11:6:3:1 is a major end-product of photosynthesis by Palmella mucosa Kütz.The liberation of polysaccharide is related to the age of the culture. Glucose can substitute efficiently for CO2 as the source of carbon for polysaccharide synthesis. Nitrate-nitrogen from sodium, potassium and calcium salts can be used in the mineral salts medium with little differences in carbon metabolism of the alga. Ammonium nitrate produces an acidic medium which limits polysaccharide production.The incorporation of C14 into the polysaccharide from NaHC14O3 shows initially a trend toward intracellular synthesis. The C14 appears in the extracellular polysaccharide after prolonged exposure. Glucose-C14 is actively transformed to polysaccharide material which is an indication that glucose may play an important role in the synthesis of polysaccharide by Palmella mucosa Kütz.  相似文献   

14.
Physarum polycephalum is a plasmodial slime mold. One of the trophic stages in the life cycle of this organism is a plasmodium. In submerged culture, plasmodia are fragmented into microplasmodia. The latter both lack cell walls and are capable of rapid growth. There has been limited information on the effects of medium composition on the growth and lipid accumulation of microplasmodia. In this study, optimization of medium components by response surface methodology showed that tryptone and yeast extract concentrations had the most significant effects on lipid and biomass production; significant synergistic interactions between glucose and tryptone concentration on these responses were also recorded. The optimal medium was composed of 20 g/L of glucose, 6.59 g/L of tryptone, and 3.0 g/L of yeast extract. This medium yielded 13.86 g/L of dry biomass and 1.97 g/L of lipids. These amounts are threefold higher than those of the American Type Culture Collection (ATCC) medium. In addition, biomass and lipid production reached maximal values between only 4 and 5 days. Fatty acid compositions analysis by gas chromatography-mass spectrometer (GC–MS) revealed that P. polycephalum lipids consisted mainly of oleic acid (40.5%), linoleic acid (10%), and octadecynoic (15.8%). This is the first report on the fatty acid composition of P. polycephalum microplasmodia. These results suggest that the biomass of microplasmodia could be used as a source of material for direct conversion into biodiesel because of the absence of cell walls or it could also be used as a supplemental source of beneficial fatty acids for humans, albeit with some further evaluation needed.  相似文献   

15.
The myxomycetePhysarum polycephalum synthesizes copious amounts of slime when differentiating into the hard walled resting stage. The chemical composition of slime obtained after introduction of spherulation in a nutrient and a non-nutrient salt-medium has been analysed and compared. The composition of slime is almost identical after the two different induction methods. This slime could be labelled with radioactived-[U-14C]glucose,32PO4 3–,35SO4 2– and75SeO4 2–. The kinetics of slime secretion after both induction methods has been followed using different criteria. The sulfate analog75SeO4 2– seems to be incorporated into the slime, partially replacing sulfate groups of the sulfated polysaccharide. Furthermore,d-[U-14C]glucose was used to labe the spherule walls. Determination of an alkali resistent polysaccharide component serves as a new method to follow wall formation.  相似文献   

16.
Melanin synthesis in the myxomycete Physarum polycephalum occurs during sporulation but not during spherule formation. Melanin-like pigment was extracted from spores. An almost identical substance of polyphenols was extracted from spherules and characterized by its ultraviolet and infrared absorbance spectra. Polyphenol oxidase activity in spherules was very low and showed only one weak isoenzyme band in isoelectric focusing polyacrylamide gels. A much higher activity, and an increasing number of isoenzymes, were detected in sporulating cultures after illumination during the differentiation process. The addition of melanin precursors resulted in the synthesis of brownish-yellow spherules, probably containing dopachrome, whereas the addition of polyphenol oxidase inhibitors resulted in yellow sporangia. The results indicate that melanin synthesis is probably only a stage in maturation but not an essential part of the morphogenetic process itself.  相似文献   

17.
The microplasmodia of the slime mold, Physarum polycephalum, coalesce readily upon contact. The nuclei of the resulting macroplasmodia divide in synchrony approx. 6–8 h after coalescence. If prior to coalescence the microplasmodia are maintained on non-nutrient salts solution, followed by continued starvation of the resulting macroplasmodia, the nuclei also will eventually divide, although at a much later time. This mitosis occurs earlier if the starved microplasmodia are irradiated with UV light prior to coalescence. The most pronounced advancement of mitosis was found in plasmodia which were obtained by coalescence of irradiated, starved microplasmodia with non-irradiated ones.  相似文献   

18.
The herbicide paraquat was used to investigate the effects of oxidative stress on the spherulation of Physarum polycephalum microplasmodia. The responses of a white non-differentiating strain of Physarum were compared with those of a common yellow strain that readily spherulates in salts-only starvation medium. The addition of paraquat to the salts medium increased the specific activity of superoxide dismutase in both strains; it also induced an increase in the intracellular inorganic peroxide concentration in both strains. Glutathione concentration was higher in the paraquat-treated yellow strain than in the controls. Paraquat had no effect on glutathione concentration in white microplasmodia. Paraquat accelerated spherulation in yellow microplasmodia. The white microplasmodia responded to the herbicide by cleaving into structures similar to immature spherules; however, these structures were not viable. The results of this study support the hypothesis that free radicals are involved in cell state transitions.  相似文献   

19.
This study describes the kinetics of 35S-incorporation during in vivo sulfate esterification of Porphyridium aerugineum capsular polysaccharide. Techniques were developed to isolate the precursor pool (free sulfate), cell-associated product, and extracellular product. Specific radioactivities of these three fractions were monitored during pulse-chase sequences. Label rapidly appeared in the pool during the pulse, then declined asymptotically during the chase as equilibrium was approached. Efflux of small quantities of isotope from the cell during chase periods was not the result of backleakage, but the result of washing untransported isotope from the free-space. During the pulse, intracellular product was labeled at 25% of the rate at which the pool was labeled. Fully 50% of the label which left the pool was incorporated into the polysaccharide as ester sulfate, indicating that polysaccharide esterification is a major metabolic pathway for sulfate. The specific radioactivity of the extracellular product increased slowly throughout pulse and chase periods.  相似文献   

20.
Abstract. The herbicide paraquat was used to investigate the effects of oxidative stress on the spherulation of Physarum polycephalum microplasmodia. the responses of a white non-differentiating strain of Physarum were compared with those of a common yellow strain that readily spherulates in salts-only starvation medium. the addition of paraquat to the salts medium increased the specific activity of superoxide dismutase in both strains; it also induced an increase in the intracellular inorganic peroxide concentration in both strains. Glutathione concentration was higher in the paraquat-treated yellow strain than in the controls. Paraquat had no effect on glutathione concentration in white microplasmodia. Paraquat accelerated spherulation in yellow microplasmodia. the white microplasmodia responded to the herbicide by cleaving into structures similar to immature spherules; however, these structures were not viable. the results of this study support the hypothesis that free radicals are involved in cell state transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号