首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
One of the forms of phosphate activated glutaminase (PAG) is associated with the inner mitochondrial membrane. It has been debated whether glutamate formed from glutamine in the reaction catalyzed by PAG has direct access to mitochondrial or cytosolic metabolism. In this study, metabolism of [U-13C]glutamine (3 mM) or [U-13C]glutamate (10 mM) was investigated in isolated rat brain mitochondria. The presence of a functional tricarboxylic (TCA) cycle in the mitochondria was tested using [U-13C]succinate as substrate and extensive labeling in aspartate was seen. Accumulation of glutamine into the mitochondrial matrix was inhibited by histidine (15 mM). Extracts of mitochondria were analyzed for labeling in glutamine, glutamate and aspartate using liquid chromatography-mass spectrometry. Formation of [U-13C]glutamate from exogenous [U-13C]glutamine was decreased about 50% (P < 0.001) in the presence of histidine. In addition, the 13C-labeled skeleton of [U-13C]glutamine was metabolized more vividly in the tricarboxylic acid (TCA) cycle than that from [U-13C]glutamate, even though glutamate was labeled to a higher extent in the latter condition. Collectively the results show that transport of glutamine into the mitochondrial matrix may be a prerequisite for deamidation by PAG. Special issue article in honor of Dr. Frode Fonnum. Lasse K. Bak and Elżbieta Ziemińska contributed equally to the experimental work described in this paper.  相似文献   

2.
Glutamate metabolism was studied in co-cultures of mouse cerebellar neurons (predominantly glutamatergic) and astrocytes. One set of cultures was superfused (90 min) in the presence of either [U-13C]glucose (2.5 mM) and lactate (1 mM) or [U-13C]lactate (1 mM) and glucose (2.5 mM). Other sets of cultures were incubated in medium containing [U-13C]lactate (1 mM) and glucose (2.5 mM) for 4 h. Regardless of the experimental conditions cell extracts were analyzed using mass spectrometry and nuclear magnetic resonance spectroscopy. 13C labeling of glutamate was much higher than that of glutamine under all experimental conditions indicating that acetyl-CoA from both lactate and glucose was preferentially metabolized in the neurons. Aspartate labeling was similar to that of glutamate, especially when [U-13C]glucose was the substrate. Labeling of glutamate, aspartate and glutamine was lower in the cells incubated with [U-13C]lactate. The first part of the pyruvate recycling pathway, pyruvate formation, was detected in singlet and doublet labeling of alanine under all experimental conditions. However, full recycling, detectable in singlet labeling of glutamate in the C-4 position was only quantifiable in the superfused cells both from [U-13C]glucose and [U-13C]lactate. Lactate and alanine were mostly uniformly labeled and labeling of alanine was the same regardless of the labeled substrate present and higher than that of lactate when superfused in the presence of [U-13C]glucose. These results show that metabolism of pyruvate, the precursor for lactate, alanine and acetyl-CoA is highly compartmentalized. Special issue dedicated to John P. Blass.  相似文献   

3.
Metabolism of glutamine was determined under a variety of conditions to study compartmentation in cortical synaptosomes. The combined intracellular and extracellular amounts of [U-13C]GABA, [U-13C]glutamate and [U-13C]glutamine were the same in synaptosomes incubated with [U-13C]glutamine in the presence and absence of glucose. However, the concentration of these amino acids was decreased in the latter group, demonstrating the requirement for glucose to maintain the size of neurotransmitter pools. In hypoglycemic synaptosomes more [U-13C]glutamine was converted to [U-13C]aspartate, and less glutamate was re-synthesized from the tricarboxylic acid (TCA) cycle, suggesting use of the partial TCA cycle from -ketoglutarate to oxaloacetate for energy. Compartmentation was studied in synaptosomes incubated with glucose plus labeled and unlabeled glutamine and glutamate. Incubation with [U-13C]glutamine plus unlabeled glutamate gave rise to [U-13C]GABA but not labeled aspartate; however, incubation with [U-13C]glutamate plus unlabeled glutamine gave rise to [U-13C]aspartate, but not labeled GABA. Thus the endogenous glutamate formed via glutaminase in synaptic terminals is preferentially used for GABA synthesis, and is metabolized differently than glutamate taken up from the extracellular milieu.  相似文献   

4.
Abstract: The present study determined the metabolic fate of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain and also in cultures incubated in the presence of 1 or 5 mMα-ketoisocaproate (α-KIC). When astrocytes were incubated with 0.2 mM [U-13C]glutamate, 64.1% of the 13C metabolized was converted to glutamine, and the remainder was metabolized via the tricarboxylic acid (TCA) cycle. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. In control astrocytes, 8.0% of the [13C]glutamate metabolized was incorporated into intracellular aspartate, and 17.2% was incorporated into lactate that was released into the medium. In contrast, there was no detectable incorporation of [13C]glutamate into aspartate in astrocytes incubated in the presence of α-KIC. In addition, the intracellular aspartate concentration was decreased 50% in these cells. However, there was increased incorporation of [13C]glutamate into the 1,2,3-13C3-isotopomer of lactate in cells incubated in the presence of α-KIC versus controls, with formation of lactate accounting for 34.8% of the glutamate metabolized in astrocytes incubated in the presence of α-KIC. Altogether more of the [13C]glutamate was metabolized via the TCA cycle, and less was converted to glutamine in astrocytes incubated in the presence of α-KIC than in control cells. Overall, the results demonstrate that the presence of α-KIC profoundly influences the metabolic disposition of glutamate by astrocytes and leads to altered concentrations of other metabolites, including aspartate, lactate, and leucine. The decrease in formation of aspartate from glutamate and in total concentration of aspartate may impair the activity of the malate-aspartate shuttle and the ability of astrocytes to transfer reducing equivalents into the mitochondria and thus compromise overall energy metabolism in astrocytes.  相似文献   

5.
—(1) The effects of aminooxyacetic acid, ouabain and Ca2+ on the compartmentation of amino acid metabolism have been studied in slices of brain incubated with sodium-[1-14C]acetate, l-[U-14C]glutamate and l-[U-14C]aspartate as tracer metabolites. (2) Aminooxyacetic acid (10-3 m) inhibited the labelling of aspartate from [14C]acetate and [14C]glutamate, as well as the incorporation of label from [14C]aspartate into glutamate and glutamine. It also inhibited the labelling of GABA from all three radioactive precursors, as would be anticipated if there was inhibition of several transaminases as well as glutamate decarboxylase. The RSA of glutamine labelled from [1-14C]acetate was increased. This finding indicated that the glutamate pool which is utilized for glutamine formation is associated with glutamate dehydrogenase, and this enzyme appears to be related to the ‘synthetic tricarboxylic acid cycle’. AOAA exerted its major inhibitory effects on the citric acid‘energy cycle’with which transaminases are associated. (3) Ouabain (10-5 m) inhibited the labelling of glutamine to a much greater extent than the labelling of glutamate from [1-14C]acetate. It also caused leakage of amino acids from the tissue into the medium. Its effect on the glutamate–glutamine system was interpreted to be a selective inhibition of the 'synthetic’citric acid cycle. (4) The omission of Ca2+ from the incubation medium was associated with formation of glutamine with RSA less than 1·0 when labelled from [U-14C]glutamate, [U-14C]aspartate and lower than normal when labelled from [1-14C]acetate.  相似文献   

6.
To clarify the unique characteristics of amino acid metabolism derived from glucose in the central nervous system (CNS), we injected [1-13C]glucose intraperitoneally to the rat, and extracted the free amino acids from several kinds of tissues and measured the amount of incorporation of13C derived from [1-13C]glucose into each amino acid using13C-magnetic resonance spectroscopy (NMR). In the adult rat brain, the intensities of resonances from13C-amino acids were observed in the following order: glutamate, glutamine, aspartate, -aminobutyrate (GABA) and alanine. There seemed no regional difference on this labeling pattern in the brain. However, only in the striatum and thalamus, the intensities of resonances from [2-13C]GABA were larger than that from [2,3-13C]aspartate. In the other tissues, such as heart, kidney, liver, spleen, muscle, lung and small intestine, the resonances from GABA were not detected and every intensity of resonances from13C-amino acids, except13C-alanine, was much smaller than those in the brain and spinal cord. In the serum,13C-amino acid was not detected at all. When the rats were decapitated, in the brain, the resonances from [1-13C]glucose greatly reduced and the intensities of resonances from [3-13C]lactate, [3-13C]alanine, [2, 3, 4-13C]GABA and [2-13C]glutamine became larger as compared with those in the case that the rats were sacrificed with microwave. In other tissues, the resonances from [1-13C]glucose were clearly detected even after the decapitation. In the glioma induced by nitrosoethylurea in the spinal cord, the large resonances from glutamine and alanine were observed; however, the intensities of resonances from glutamate were considerably reduced and the resonances from GABA and aspartate were not detected. These results show that the pattern of13C label incorporation into amino acids is unique in the central nervous tissues and also suggest that the metabolic compartmentalization could exist in the CNS through the metabolic trafficking between neurons and astroglia.Abbreviations NMR nuclear magnetic resonance - GABA -aminobutyrate - GFAP glial fibrillary acidic protein Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

7.
Cultured neocortical neurons were incubated in medium containing [U-13C]glucose (0.5 mM) and in some cases unlabeled glutamine (0.5 mM). Subsequently the cells were "superfused" for investigation of the effect of depolarization by 55 mM K+. Cell extracts were analyzed by 13C magnetic resonance spectroscopy and gas chromatography/mass spectrometry to determine incorporation of 13C in glutamate, GABA, aspartate and fumarate. The importance of the tricarboxylic acid (TCA) cycle for conversion of the carbon skeleton of glutamine to GABA was evident from the effect of glutamine on the labeling pattern of GABA and glutamate. Moreover, analysis of the labeling patterns of glutamate in particular indicated a depolarization induced increased oxidative metabolism. This effect was only observed in glutamate and not in neurotransmitter GABA. Based on this a hypothesis of mitochondrial compartmentation may be proposed in which mitochondria associated with neurotransmitter synthesis are distinct from those aimed at energy production and influenced by depolarization. The hypothesis of mitochondrial compartmentation was further supported by the finding that the total percent labeling of fumarate and aspartate differed significantly from each other. This can only be explained by the existence of multiple TCA cycles with different turnover rates.  相似文献   

8.
Co-cultures of neurons and astrocytes were prepared from dissociated embryonic mouse cerebral cortex and cultured for 7 days. To investigate if these cultures may serve as a functional model system to study neuron-glia interaction with regard to GABA biosynthesis, the cells were incubated either in media containing [U-13C]glutamine (0.1, 0.3 and 0.5 mM) or 1 mM acetate plus 2.5 mM glucose plus 1 mM lactate. In the latter case one of the 3 substrates was uniformly 13C labeled. Cellular contents and 13C labeling of glutamate, GABA, aspartate and glutamine were determined in the cells after an incubation period of 2.5 h. The GABA biosynthetic machinery exhibited the expected complexity with regard to metabolic compartmentation and involvement of TCA cycle activity as seen in other culture systems containing GABAergic neurons. Metabolism of acetate clearly demonstrated glial synthesis of glutamine and its transfer to the neuronal compartment. It is concluded that this co-culture system serves as a reliable model in which functional and pharmacological aspects of GABA biosynthesis can be investigated. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella. An erratum to this article can be found at  相似文献   

9.
The 13C turnover of neurotransmitter amino acids (glutamate, GABA and aspartate) were determined from extracts of forebrain nerve terminals and brain homogenate, and fronto-parietal cortex from anesthetized rats undergoing timed infusions of [1,6-13C2]glucose or [2-13C]acetate. Nerve terminal 13C fractional labeling of glutamate and aspartate was lower than those in whole cortical tissue at all times measured (up to 120 min), suggesting either the presence of a constant dilution flux from an unlabeled substrate or an unlabeled (effectively non-communicating on the measurement timescale) glutamate pool in the nerve terminals. Half times of 13C labeling from [1,6-13C2]glucose, as estimated by least squares exponential fitting to the time course data, were longer for nerve terminals (GluC4, 21.8 min; GABAC2 21.0 min) compared to cortical tissue (GluC4, 12.4 min; GABAC2, 14.5 min), except for AspC3, which was similar (26.5 vs. 27.0 min). The slower turnover of glutamate in the nerve terminals (but not GABA) compared to the cortex may reflect selective effects of anesthesia on activity-dependent glucose use, which might be more pronounced in the terminals. The 13C labeling ratio for glutamate-C4 from [2-13C]acetate over that of 13C-glucose was twice as large in nerve terminals compared to cortex, suggesting that astroglial glutamine under the 13C glucose infusion was the likely source of much of the nerve terminal dilution. The net replenishment of most of the nerve terminal amino acid pools occurs directly via trafficking of astroglial glutamine.  相似文献   

10.
—Glucose is a major precursor of glutamate and related amino acids in the retina of adult rats. 14C from labelled glucose appears to gain access to a large glutamate pool, and the resulting specific activity of glutamate labelled from glucose is always higher than that of glutamine or the other amino acids. Radioactive acetate appeared to label a small glutamate pool. The specific activity of glutamine labelled from acetate relative to that of glutamate was always greater than 1.0. Other precursors of the small glutamate pool were found to include glutamate, aspartate, GABA, serine, leucine and sodium bicarbonate. The level of radioactivity present in retinae incubated with [U-14C]glucose or [1-14C]sodium acetate was reduced in the presence of 10?5m -ouabain. Under these conditions, the relative specific activity of glutamine labelled from [1-14C]sodium acetate was lowered, but it was raised when [U-14C]glucose was used as substrate. Ouabain also considerably reduced the synthesis of GABA from [1-14C]sodium acetate. In all cases ouabain caused a fall in the tissue levels of the amino acids. Aminooxyacetic acid (10?4m ) almost completely abolished the labelling of GABA from both [U-14C]glucose and [1-14C]sodium acetate, while the RSA of glutamine labelled from the latter substrate was significantly increased. Aminooxyacetic acid raised the tissue concentration of glutamate, but caused a fall in the tissue concentrations of glutamine, aspartate and GABA. The results suggest that there are separate compartments for the metabolism of glutamate in retina and that these can be modified in different ways by different drugs.  相似文献   

11.
Kreb's tricarboxylic (TCA) cycle was studied in Halobacterium salinarum cells grown in the presence of glucose or alanine. The cells were incubated with 13C-labeled substrate and the labeling pattern of various carbon positions in glutamate was monitored by 13C-NMR spectroscopy. [2-13C]pyruvate, when used as a substrate, led mainly to signals for C-1 and C-5 glutamate, with some C-3 glutamate. [3-13C]pyruvate as a substrate produced signals, mainly C-2, C-3, and C-4 glutamate, with some C-1 and C-5 glutamate. The multiplicity of the signals and observation of a C-1 signal in this case indicates extensive cycling of the label in the TCA cycle. Isotopomer analysis of glutamate labeling suggested that of the total pyruvate entering the TCA cycle, the flux through pyruvate:ferredoxin oxidoreductase was 90% while that through pyruvate caboxylase was 10%. Only 53% of the total acetyl-CoA was produced from the added labeled pyruvate, the rest being generated endogenously. In the presence of nitrogen, mainly transamination reaction products were formed in the case of both these substrates. Received: November 26, 1997 / Accepted: May 11, 1998  相似文献   

12.
β-[U-14C]Alanine can be synthesized in >95% yield from l-[U-14C]aspartic acid using the aspartate 1-decarboxylase of Escherichia coli and converted to d-[1,2,3-14C]pantothenate in a 10–20% yield using the pantothenate synthetase of E. coli. Sufficiently pure preparations of both enzymes are readily obtained.  相似文献   

13.
Labelling experiments with [2-13C]- and [1,2-13C]acetate showed that both photopigments of Anacystis nidulans, chlorophyll a and phycocyanobilin, share a common biosynthetic pathway from glutamate. The fate of deuterium during these biosynthetic events was studied using [2-13C, 2-2H3]acetate as a precursor and determining the labelling pattern by 13C NMR spectroscopy with simultaneous [1H, 2H]-broadband decoupling. The loss of 2H (ca 20%) from the precursor occurred at an early stage during the tricarboxylic acid cycle. After formation of glutamate there was no further loss of 2H in the assembly of the cyclic tetrapyrrole intermediates or during decarboxylation and modification of the side-chains. Thus the labelling data support a divergence in the pathway to cyclic and linear tetrapyrroles after protoporphyrin IX.  相似文献   

14.
Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15–90 min with unlabeled glucose in combination with [U-13C]glucose or [1,2-13C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography–mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13C-labeling observed with [U-13C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2-13C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13C-labeling (%) data obtained from mass spectrometry. Based on this approach we suggest that cellular metabolic compartmentation in hippocampus and cerebral cortex is very similar.  相似文献   

15.
[U-13C]Glutamate metabolism was studied in primary brain cell cultures. Cell extracts as well as redissolved lyophilized media were subjected to nuclear magnetic resonance spectroscopy in order to identify13C labeled metabolites. Both neurons and astrocytes metabolized glutamate extensively with13C label appearing in aspartate in all cultures. Additionally, GABA is synthesized in the GABAergic cortical neurons. Labeling of lactate and glutamine was prominent in medium from astrocytes, but not detectable in cerebral cortical neurons. Cerebellar granule neurons showed some labeling of lactate. Glutamate derived from the first turn of the tricarboxylic acid cycle (1,2,3-13C3-isotopomer) is present in all cell types analyzed. However, glutamate derived from the second turn of the cycle was only detected in granule neurons. In astrocytes, the transaminase inhibitor aminooxyacetic acid not only abolished the appearance of aspartate, but also of the 1,2,3-13C3-isotopomer of glutamate, thus showing that transmination is necessary for the conversion of 2-oxoglutarate to glutamate. The entry of glutamate into the tricarboxylic acid cycle was, however, not seriously impaired. 3-nitropropionic acid abolished the appearance of aspartate, the 1,2,3-13C3-isotopomer of glutamate and lactate in cerebellar granule neurons. Special issue dedicated to Dr. Herman Bachelard.  相似文献   

16.
Studies in vivo and in vitro of the distribution of label in C-1 of glutamate and glutamine and C-4 of aspartate in the free amino acids of brain were carried out. [1-14C]-Acetate was used both in vivo and in vitro and l -[U-14C]aspartate and l -[U-14C]glutamate were used in vitro.
  • 1 The results obtained with labelled acetate and aspartate suggest that CO2 and a 3-carbon acid may exchange at different rates on a COa-fixing enzyme.
  • 2 The apparent cycling times of both glutamate and glutamine show fast components measured in minutes and slow components measured in hours.
  • 3 With [1-14C]acetate in vitro glutamine is more rapidly labelled in C-1 than is glutamate at early time points; the curves cross over at about 7 min.
  • 4 The results support and extend the concept of metabolic compartmentation of amino acid metabolism in brain.
  相似文献   

17.
Depolarization-elicited release of neurotransmitter glutamate was studied in rat cerebellar slices previously loaded with either [3H]l-glutamate or [3H]l-glutamine. Both depolarization conditions used (e.g. long-lasting tonic depolarization elicited by veratridine, or short repetive electrical pulses) increased 6 to 8 folds the release of labelled glutamate and of another compound, presumably alpha-ketoglutarate, without modifying the release of labeled glutamine. Because of the position of the label in the precursor radioactive molecules, GABA was weakly labeled and aspartate was unlabeled. The properties of the evoked glutamate release from cerebellar slices were those of a neurotransmitter since it was inhibited by tetrodotoxin and was Ca2+-dependent. Alpha-ketoglutarate is either coreleased from nerve terminals or is released from astrocytes and could participate in glutamate recycling. The data confirm the generally accepted model implying the presence of two neurotransmitter glutamate pools, a neuronal pool of newly synthesized glutamate and an astrocytic storage pool, but in addition indicate that the former is in rapid isotopic equilibrium with the extracellular compartment. Our present results also indicate that the glutamate/glutamine cycle is not activated in depolarizing conditions.With the technical assistance of O. LEVY1 and K. WINDISCH2  相似文献   

18.
(1) The metabolism of glucose and amino acids in vitro was compared in the rat cerebral cortex and the optic and vertical lobes of the octopus brain. (2) Specific activities and pool sizes of the five amino acids, glutamate, aspartate, glutamine, alanine and γ-aminobutyric acid (GABA), were determined in octopus and rat brain slices after 2 hr incubation with 10 mm -[U-14C]glucose, 10 mm -L-[U-14C]glutamate, and 10mm -L-[U-14C]glutamate with added 10 mM-glucose. Amino acid pool sizes were similar in rat and octopus brain, with the exception of alanine, which was higher in the octopus. Generally specific activities were from four- to 20-fold higher in rat brain. With [U-14C]glucose as substrate, specific activities of GABA and glutamate were highest in rat; those of alanine and glutamine highest in octopus brain. With L-[U-14C]glutamate the specific activities of GABA and aspartate were highest in rat, that of aspartate highest and GABA lowest in octopus. The addition of glucose to L-[U-14C]glutamate as substrate had little effect on the specific activities of any of the amino acids. (3) The uptake of some amino acids was determined by incubation with [U-14C]amino acids for 2 hr, and 14CO2 formation was also measured. The amount of label taken up by octopus was uniformly 20-25 per cent of that found for rat brain. The amount of 14CO2, however, differed according to the amino acid. Four times as much 14CO2 was generated from alanine by octopus optic lobe and twice as much by the vertical lobe than rat cortex, but from glutamate, only 24 per cent in the optic and 15 per cent in the vertical lobe. No 14CO2 was generated from [U-14C]GABA in the octopus, by contrast with the rat. (4) Activity of some of the enzymes involved in amino acid metabolism was determined in homogenates of rat cortex and octopus optic and vertical lobes, with and without activation by Triton X-100. Enzymic activities in the octopus, with the exception of alanine aminotransferase, were lower than in the rat, and glutamate decarboxylase could not be detected in octopus brain, in the absence of detergent.  相似文献   

19.
Abstract: Nuclear magnetic resonance (NMR) was used to study the metabolic pathways involved in the conversion of glucose to glutamate, γ-aminobutyrate (GABA), glutamine, and aspartate. d -[1-13C]Glucose was administered to rats intraperitoneally, and 6, 15, 30, or 45 min later the rats were killed and extracts from the forebrain were prepared for 13C-NMR analysis and amino acid analysis. The absolute amount of 13C present within each carbon-atom pool was determined for C-2, C-3, and C-4 of glutamate, glutamine, and GABA, for C-2 and C-3 of aspartate, and for C-3 of lactate. The natural abundance 13C present in extracts from control rats was also determined for each of these compounds and for N-acetylaspartate and taurine. The pattern of labeling within glutamate and GABA indicates that these amino acids were synthesized primarily within compartments in which glucose was metabolized to pyruvate, followed by decarboxylation to acetyl-CoA for entry into the tricarboxylic acid cycle. In contrast, the labeling pattern for glutamine and aspartate indicates that appreciable amounts of these amino acids were synthesized within a compartment in which glucose was metabolized to pyruvate, followed by carboxylation to oxaloacetate. These results are consistent with the concept that pyruvate carboxylase and glutamine synthetase are glia-specific enzymes, and that this partially accounts for the unusual metabolic compartmentation in CNS tissues. The results of our study also support the concept that there are several pools of glutamate, with different metabolic turnover rates. Our results also are consistent with the concept that glutamine and/or a tricarboxylic acid cycle intermediate is supplied by astrocytes to neurons for replenishing the neurotransmitter pool of GABA. However, a similar role for astrocytes in replenishing the transmitter pool of glutamate was not substantiated, possibly due to difficulties in quantitating satellite peaks arising from 13C-13C coupling.  相似文献   

20.
The use of parallel labeling experiments for 13C metabolic flux analysis (13C-MFA) has emerged in recent years as the new gold standard in fluxomics. The methodology has been termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. In this contribution, we have tested the limits of COMPLETE-MFA by demonstrating integrated analysis of 14 parallel labeling experiments with Escherichia coli. An effort on such a massive scale has never been attempted before. In addition to several widely used isotopic tracers such as [1,2-13C]glucose and mixtures of [1-13C]glucose and [U-13C]glucose, four novel tracers were applied in this study: [2,3-13C]glucose, [4,5,6-13C]glucose, [2,3,4,5,6-13C]glucose and a mixture of [1-13C]glucose and [4,5,6-13C]glucose. This allowed us for the first time to compare the performance of a large number of isotopic tracers. Overall, there was no single best tracer for the entire E. coli metabolic network model. Tracers that produced well-resolved fluxes in the upper part of metabolism (glycolysis and pentose phosphate pathways) showed poor performance for fluxes in the lower part of metabolism (TCA cycle and anaplerotic reactions), and vice versa. The best tracer for upper metabolism was 80% [1-13C]glucose+20% [U-13C]glucose, while [4,5,6-13C]glucose and [5-13C]glucose both produced optimal flux resolution in the lower part of metabolism. COMPLETE-MFA improved both flux precision and flux observability, i.e. more independent fluxes were resolved with smaller confidence intervals, especially exchange fluxes. Overall, this study demonstrates that COMPLETE-MFA is a powerful approach for improving flux measurements and that this methodology should be considered in future studies that require very high flux resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号