首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Lee EG  Linial ML 《Journal of virology》2004,78(16):8486-8495
The Orthoretrovirus Gag interaction (I) domain maps to the nucleocapsid (NC) domain in the Gag polyprotein. We used the yeast two-hybrid system to analyze the role of Alpharetrovirus NC in Gag-Gag interactions and also examined the efficiency of viral assembly and release in vivo. We could delete either or both of the two Cys-His (CH) boxes without abrogating Gag-Gag interactions. We found that as few as eight clustered basic residues, attached to the C terminus of the spacer peptide separating the capsid (CA) and NC domains in the absence of NC, was sufficient for Gag-Gag interactions. Our results support the idea that a sufficient number of basic residues, rather than the CH boxes, play the important role in Gag multimerization. We also examined the requirement for basic residues in Gag for packaging of specific packaging signal (Psi)-containing RNA. Using a yeast three-hybrid RNA-protein interaction assay, second-site suppressors of a packaging-defective Gag mutant were isolated, which restored Psi RNA binding. These suppressors mapped to the p10 or CA domains in Gag and resulted in either introduction of a positively charged residue or elimination of a negatively charged one. These results imply that the structural interactions of NC with other domains of Gag are necessary for Psi RNA binding. Taken together, our results show that while Gag assembly only requires a certain number of positively charged amino acids, Gag binding to genomic RNA for packaging requires more complex interactions inherent in the protein tertiary structure.  相似文献   

2.
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein directs the formation of virions from productively infected cells. Many gag mutations disrupt virion assembly, but little is known about the biochemical effects of many of these mutations. Protein-protein interactions among Gag monomers are believed to be necessary for virion assembly, and data suggest that RNA may modify protein-protein interactions or even serve as a bridge linking Gag polyprotein monomers. To evaluate the primary sequence requirements for HIV-1 Gag homomeric interactions, a panel of HIV-1 Gag deletion mutants was expressed in bacteria and evaluated for the ability to associate with full-length Gag in vitro. The nucleocapsid protein, the major RNA-binding domain of Gag, exhibited activity comparable to that of the complete polyprotein. In the absence of the nucleocapsid protein, relatively weak activity was observed that was dependent upon both the capsid-dimer interface and basic residues within the matrix domain. The relevance of the in vitro findings was confirmed with an assay in which nonmyristylated mutant Gags were assessed for the ability to be incorporated into virions produced by wild-type Gag expressed in trans. Evidence of the importance of RNA for Gag-Gag interaction was provided by the demonstration that RNase impairs the Gag-Gag interaction and that HIV-1 Gag interacts efficiently with Gags encoded by distantly related retroviruses and with structurally unrelated RNA-binding proteins. These results are consistent with models in which Gag multimerization involves indirect contacts via an RNA bridge as well as direct protein-protein interactions.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) assembly takes place at the plasma membrane of cells and is directed by the Pr55(Gag) polyprotein (Gag). One of the essential steps in the assembly process is the multimerization of Gag. We have developed a novel fluorescence resonance energy transfer (FRET) assay for the detection of protein-protein interactions between Gag molecules. We demonstrate that Gag multimerization takes place primarily on cellular membranes, with the majority of these interactions occurring on the plasma membrane. However, distinct sites of Gag-Gag interaction are also present at punctate intracellular locations. The I domain is a functional assembly domain within the nucleocapsid region of Gag that affects particle density, the subcellular localization of Gag, and the formation of detergent-resistant Gag protein complexes. Results from this study provide evidence that the I domain mediates Gag-Gag interactions. Using Gag-fluorescent protein fusion constructs that were previously shown to define the minimal I domain within HIV-1 Pr55(Gag), we show by FRET techniques that protein-protein interactions are greatly diminished when Gag proteins lacking the I domain are expressed. Gag-Tsg101 interactions are also seen in living cells and result in a shift of Tsg101 to the plasma membrane. The results within this study provide direct evidence that the I domain mediates protein-protein interactions between Gag molecules. Furthermore, this study establishes FRET as a powerful tool for the detection of protein-protein interactions involved in retrovirus assembly.  相似文献   

4.
We have examined structural interactions between Gag proteins within Moloney murine leukemia virus (M-MuLV) particles by making use of the cysteine-specific cross-linking agents iodine and bis-maleimido hexane. Virion-associated wild-type M-MuLV Pr65Gag proteins in immature particles were intermolecularly cross-linked at cysteines to form Pr65Gag oligomers, from dimers to pentamers or hexamers. Following a systematic approach of cysteine-to-serine mutagenesis, we have shown that cross-linking of Pr65Gag occurred at cysteines of the nucleocapsid (NC) Cys-His motif, suggesting that the Cys-His motifs within virus particles are packed in close proximity. The M-MuLV Pr65Gag protein did not cross-link to the human immunodeficiency virus Pr55Gag protein when the two molecules were coexpressed, indicating either that they did not coassemble or that heterologous Gag proteins were not in close enough proximity to be cross-linked. Using an assembly-competent, protease-minus, cysteine-minus Pr65Gag protein as a template, novel cysteine residues were generated in the M-MuLV capsid domain major homology region (MHR). Cross-linking of proteins containing MHR cysteines showed above-background levels of Gag-Gag dimers but also identified a novel cellular factor, present in virions, that cross-linked to MHR residues. Although the NC cysteine mutation was compatible with M-MuLV particle assembly, deletions of the NC domain were not tolerated. These results suggest that the Cys-His motif is held in close proximity within immature M-MuLV particles by interactions between CA domains and/or non-Cys-His motif domains of the NC.  相似文献   

5.
Ono A  Demirov D  Freed EO 《Journal of virology》2000,74(11):5142-5150
The human immunodeficiency virus type 1 (HIV-1) Gag precursor, Pr55(Gag), is necessary and sufficient for the assembly and release of viruslike particles. Binding of Gag to membrane and Gag multimerization are both essential steps in virus assembly, yet the domains responsible for these events have not been fully defined. In addition, the relationship between membrane binding and Gag-Gag interaction remains to be elucidated. To investigate these issues, we analyzed, in vivo, the membrane-binding and assembly properties of a series of C-terminally truncated Gag mutants. Pr55(Gag) was truncated at the C terminus of matrix (MAstop), between the N- and C-terminal domains of capsid (CA146stop), at the C terminus of capsid (p41stop), at the C terminus of p2 (p43stop), and after the N-terminal 35 amino acids of nucleocapsid (NC35stop). The ability of these truncated Gag molecules to assemble and release viruslike particles and their capacity to copackage into particles when coexpressed with full-length Gag were determined. We demonstrate that the amount of truncated Gag incorporated into particles is incrementally increased by extension from CA146 to NC35, suggesting that multiple sites in this region are involved in Gag multimerization. Using membrane flotation centrifugation, we observe that MA shows significantly reduced membrane binding relative to full-length Gag but that CA146 displays steady-state membrane-binding properties comparable to those of Pr55(Gag). The finding that the CA146 mutant, which contains only matrix and the N-terminal domain of capsid, exhibits levels of steady-state membrane binding equivalent to those of full-length Gag indicates that strong Gag-Gag interaction domains are not required for the efficient binding of HIV-1 Gag to membrane.  相似文献   

6.
The human immunodeficiency virus type 1 (HIV-1) Gag precursor protein Pr55(Gag) drives the assembly and release of virus-like particles in the infected cell. The capsid (CA) domain of Gag plays an important role in these processes by promoting Gag-Gag interactions during assembly. The C-terminal domain (CTD) of CA contains two dileucine-like motifs (L189/L190 and I201/L202) implicated in regulating the localization of Gag to multivesicular bodies (MVBs). These dileucine-like motifs are located in the vicinity of the CTD dimer interface, a region of CA critical for Gag-Gag interactions during virus assembly and CA-CA interactions during core formation. To study the importance of the CA dileucine-like motifs in various aspects of HIV-1 replication, we introduced a series of mutations into these motifs in the context of a full-length, infectious HIV-1 molecular clone. CA mutants LL189,190AA and IL201,202AA were both severely impaired in virus particle production because of a variety of defects in the binding of Gag to membrane, Gag multimerization, and CA folding. In contrast to the model suggesting that the CA dileucine-like motifs regulate MVB targeting, the IL201,202AA mutation did not alter Gag localization to the MVB in either HeLa cells or macrophages. Revertants of single-amino-acid substitution mutants were obtained that no longer contained dileucine-like motifs but were nevertheless fully replication competent. The varied phenotypes of the mutants reported here provide novel insights into the interplay among Gag multimerization, membrane binding, virus assembly, CA dimerization, particle maturation, and virion infectivity.  相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein is sufficient for assembly and release of virion-like particles from the plasma membrane. To promote assembly, the Gag polyprotein must polymerize to form a shell that lines the inner membrane of nascent virions. Several techniques have been used to functionally map the domain required for Gag polymerization (the I domain). Among these methods, isopycnic centrifugation has been used under the assumption that changes in virion density reflect impairment in Gag-Gag interaction. If virion density is determined by efficient Gag-Gag interaction, then mutation of basic residues in the nucleocapsid (NC) domain should disrupt virion density, since these residues constitute the I domain. However, we have previously shown that simultaneous disruption of up to 10 HIV-1 NC basic residues has no obvious effect on virion density. To rule out the possibility that HIV-1 NC basic residues other than those previously mutated might be important for virion density, mutations were introduced at the remaining sites and the ability of these mutations to affect Gag-Gag interaction and virion density was analyzed. Included in our analysis is a mutant in which all NC basic residues are replaced with alanine. Our results show that disruption of HIV-1 NC basic residues has an enormous effect on Gag-Gag interaction but only a minimal effect on the density of those virions that are still produced. Therefore, the determinants of the I domain and of virion density are genetically distinguishable.  相似文献   

8.
Cells expressing the yeast retrotransposon Ty3 form concentrated foci of Ty3 proteins and RNA within which virus-like particle (VLP) assembly occurs. Gag3, the major structural protein of the Ty3 retrotransposon, is composed of capsid (CA), spacer (SP), and nucleocapsid (NC) domains analogous to retroviral domains. Unlike the known SP domains of retroviruses, Ty3 SP is highly acidic. The current studies investigated the role of this domain. Although deletion of Ty3 SP dramatically reduced retrotransposition, significant Gag3 processing and cDNA synthesis occurred. Mutations that interfered with cleavage at the SP-NC junction disrupted CA-SP processing, cDNA synthesis, and electron-dense core formation. Mutations that interfered with cleavage of CA-SP allowed cleavage of the SP-NC junction, production of electron-dense cores, and cDNA synthesis but blocked retrotransposition. A mutant in which acidic residues of SP were replaced with alanine failed to form both Gag3 foci and VLPs. We propose a speculative "spring" model for Gag3 during assembly. In the first phase during concentration of Gag3 into foci, intramolecular interactions between negatively charged SP and positively charged NC domains of Gag3 limit multimerization. In the second phase, the NC domain binds RNA, and the bound form is stabilized by intermolecular interactions with the SP domain. These interactions promote CA domain multimerization. In the third phase, a negatively charged SP domain destabilizes the remaining CA-SP shell for cDNA release.  相似文献   

9.
During human immunodeficiency virus, type 1 (HIV-1) assembly, Gag polypeptides multimerize into immature HIV-1 capsids. The cellular ATP-binding protein ABCE1 (also called HP68 or RNase L inhibitor) appears to be critical for proper assembly of the HIV-1 capsid. In primate cells, ABCE1 associates with Gag polypeptides present in immature capsid assembly intermediates. Here we demonstrate that the NC domain of Gag is critical for interaction with endogenous primate ABCE1, whereas other domains in Gag can be deleted without eliminating the association of Gag with ABCE1. NC contains two Cys-His boxes that form zinc finger motifs and are responsible for encapsidation of HIV-1 genomic RNA. In addition, NC contains basic residues known to play a critical role in nonspecific RNA binding, Gag-Gag interactions, and particle formation. We demonstrate that basic residues in NC are needed for the Gag-ABCE1 interaction, whereas the cysteine and histidine residues in the zinc fingers are dispensable. Constructs that fail to interact with primate ABCE1 or interact poorly also fail to form capsids and are arrested at an early point in the immature capsid assembly pathway. Whereas others have shown that basic residues in NC bind nonspecifically to RNA, which in turn scaffolds or nucleates assembly, our data demonstrate that the same basic residues in NC act either directly or indirectly to recruit a cellular protein that also promotes capsid formation. Thus, in cells, basic residues in NC appear to act by two mechanisms, recruiting both RNA and a cellular ATPase in order to facilitate efficient assembly of HIV-1 capsids.  相似文献   

10.
The human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) capsid proteins (CA) display similar structures formed by two independently folded N-terminal (NTD) and C-terminal (CTD) domains. To characterize the functions harbored by the HTLV-1 CA domains in particle formation, 12 sites scattered throughout the protein were mutated. The effects of the mutations on Gag membrane binding, proteolytic processing, and virus-like particle secretion were analyzed. It appears that the NTD is the major partner of indirect or direct Gag-Gag interactions. In particular, most of the NTD mutations impaired virion morphogenesis, and no mutation located in the NTD could be fully rescued by coexpression of wild-type Gag. In contrast, the CTD seems not to be involved in Gag-Gag interactions. Nevertheless, an unknown function required for particle formation is located in the CTD. Thus, despite an overall structural similarity between the HIV-1 and HTLV-1 CA proteins, their NTDs and CTDs exhibit different functions.  相似文献   

11.
Interacting domains in human immunodeficiency virus type 1 (HIV-1) Gag precursor (Pr55gag) expressed in recombinant baculovirus-infected cells were investigated by three different methods: (i) trans rescue and coencapsidation of C-terminal deletion (amber) Gag mutants and Gag chimeras into retrovirus-like particles in complementation experiments with HIV-1 wild-type (WT) Pr55gag, (ii) Gag-Gag interactions in vitro in Gag ligand affinity blotting assays, and (iii) quantitative immunoelectron microscopy of retrovirus-like Gag particles, using a panel of monoclonal antibodies to probe the epitope accessibility of encapsidated HIV-1 WT Pr55gag. Four discrete regions, within residues 210 to 241, 277 to 306 (major homology region), and 307 to 333 in the capsid (CA) protein and residues 358 to 374 at the CA-spacer peptide 2 (sp2) junction, were found to have a significant influence on Gag trans-packaging efficiency. A fifth region, within residues 375 to 426, overlapping the sp2-nucleocapsid (NC) protein junction and most of the NC, seemed to be essential for stable inter-Gag binding in vitro. The coincidence of the two regions from 358 to 374 and 375 to 426 with an immunologically silent domain in WT Gag particles suggested that they could participate in direct Gag interactions.  相似文献   

12.
The nucleocapsid (NC) domains of retrovirus precursor Gag (PrGag) proteins play an essential role in virus assembly. Evidence suggests that NC binding to viral RNA promotes dimerization of PrGag capsid (CA) domains, which triggers assembly of CA N-terminal domains (NTDs) into hexamer rings that are interconnected by CA C-terminal domains. To examine the influence of dimerization on human immunodeficiency virus type 1 (HIV-1) Gag protein assembly in vitro, we analyzed the assembly properties of Gag proteins in which NC domains were replaced with cysteine residues that could be linked via chemical treatment. In accordance with the model that Gag protein pairing triggers assembly, we found that cysteine cross-linking or oxidation reagents induced the assembly of virus-like particles. However, efficient assembly also was observed to be temperature dependent or required the tethering of NTDs. Our results suggest a multistep pathway for HIV-1 Gag protein assembly. In the first step, Gag protein pairing through NC-RNA interactions or C-terminal cysteine linkage fosters dimerization. Next, a conformational change converts assembly-restricted dimers or small oligomers into assembly-competent ones. At the final stage, final particle assembly occurs, possibly through a set of larger intermediates.  相似文献   

13.
During retrovirus assembly, the polyprotein Gag directs protein multimerization, membrane binding, and RNA packaging. It is unknown whether assembly initiates through Gag-Gag interactions in the cytosol or at the plasma membrane. We used two fluorescence techniques-two-photon fluorescence resonance energy transfer and fluorescence correlation spectroscopy-to examine Rous sarcoma virus Gag-Gag and -membrane interactions in living cells. Both techniques provide strong evidence for interactions between Gag proteins in the cytoplasm. Fluorescence correlation spectroscopy measurements of mobility suggest that Gag is present in large cytosolic complexes, but these complexes are not entirely composed of Gag. Deletion of the nucleocapsid domain abolishes Gag interactions and membrane targeting. Deletion of the membrane-binding domain leads to enhanced cytosolic interactions. These results indicate that Gag-Gag interactions occur in the cytosol, are mediated by nucleocapsid domain, and are necessary for membrane targeting and budding. These methods also have general applicability to in vivo studies of protein-protein and -membrane interactions involved in the formation of complex macromolecular structures.  相似文献   

14.
Ott DE  Coren LV  Gagliardi TD 《Journal of virology》2005,79(22):13839-13847
RNA appears to be required for the assembly of retroviruses. This is likely due to binding of RNA by multiple Gags, which in turn organizes and stabilizes the Gag-Gag interactions that form the virion. While the nucleocapsid (NC) domain is the most conspicuous RNA-binding region of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein, we have previously shown that NC is not strictly required for efficient particle production. To determine if an RNA requirement for HIV-1 assembly exists, we analyzed virions produced by an NC deletion mutant for the presence of RNA. The results revealed that virions without NC still contained significant amounts of RNA. Since these packaged RNAs are probably incorporated by other RNA-binding sequences in Gag, an RNA-binding site in the matrix protein (MA) of Gag was mutated. While this mutation did not interfere with HIV-1 replication, a construct with both MA and NC mutations (MX/NX) failed to produce particles. The MX/NX mutant was rescued in trans by coassembly with several forms of Gag: wild-type Gag, either of the single-mutant Gags, or Gag truncations that contain MA or NC sequences. Addition of basic sequences to the MX/NX mutant partially restored particle production, consistent with a requirement for Gag-RNA binding in addition to Gag-Gag interactions. Together, these results support an RNA-binding requirement for Gag assembly, which relies on binding of RNA by MA or NC sequences to condense, organize, and stabilize the HIV-1 Gag-Gag interactions that form the virion.  相似文献   

15.
The retroviral Gag polyprotein directs virus particle assembly, resulting in the release of virions from the plasma membranes of infected cells. The earliest steps in assembly, those immediately following Gag synthesis, are very poorly understood. For Rous sarcoma virus (RSV), Gag proteins are synthesized in the cytoplasm and then undergo transient nuclear trafficking before returning to the cytoplasm for transport to the plasma membrane. Thus, RSV provides a useful model to study the initial steps in assembly because the early and later stages are spatially separated by the nuclear envelope. We previously described mutants of RSV Gag that are defective in nuclear export, thereby isolating these “trapped” Gag proteins at an early assembly step. Using the nuclear export mutants, we asked whether Gag protein-protein interactions occur within the nucleus. Complementation experiments revealed that the wild-type Gag protein could partially rescue export-defective Gag mutants into virus-like particles (VLPs). Additionally, the export mutants had a trans-dominant negative effect on wild-type Gag, interfering with its release into VLPs. Confocal imaging of wild-type and mutant Gag proteins bearing different fluorescent tags suggested that complementation between Gag proteins occurred in the nucleus. Additional evidence for nuclear Gag-Gag interactions was obtained using fluorescence resonance energy transfer, and we found that the formation of intranuclear Gag complexes was dependent on the NC domain. Bimolecular fluorescence complementation allowed the direct visualization of intranuclear Gag-Gag dimers. Together, these experimental results strongly suggest that RSV Gag proteins are capable of interacting within the nucleus.  相似文献   

16.
The retroviral Gag precursor plays an important role in the assembly of virion particles. The capsid (CA) protein of the Gag molecule makes a major contribution to this process. In the crystal structure of the free CA protein of the human immunodeficiency virus type 1 (HIV-1), 11 residues of the C terminus were found to be unstructured, and to date no information exists on the structure of these residues in the context of the Gag precursor molecule. We performed phylogenetic analysis and demonstrated a high degree of conservation of these 11 amino acids. Deletion of this cluster or introduction of various point mutations into these residues resulted in significant impairment of particle infectivity. In this cluster, two putative structural regions were identified, residues that form a hinge region (353-VGGP-356) and those that contribute to an alpha-helix (357-GHKARVL-363). Overall, mutations in these regions resulted in inhibition of virion production, but mutations in the hinge region demonstrated the most significant reduction. Although all the Gag mutants appeared to have normal Gag-Gag and Gag-RNA interactions, the hinge mutants were characterized by abnormal formation of cytoplasmic Gag complexes. Gag proteins with mutations in the hinge region demonstrated normal membrane association but aberrant rod-like membrane structures. More detailed analysis of these structures in one of the mutants demonstrated abnormal trapped Gag assemblies. These data suggest that the conserved CA C terminus is important for HIV-1 virion assembly and release and define a putative target for drug design geared to inhibit the HIV-1 assembly process.  相似文献   

17.
The interaction of the HIV Gag polyprotein with nucleic acid is a critical step in the assembly of viral particles. The Gag polyprotein is composed of the matrix (MA), capsid (CA), and nucleocapsid (NC) domains. The NC domain is required for nucleic acid interactions, and the CA domain is required for Gag-Gag interactions. Previously, we have investigated the binding of the NC protein to d(TG)(n) oligonucleotides using surface plasmon resonance (SPR) spectroscopy. We found a single NC protein is able to bind to more than one immobilized oligonucleotide, provided that the oligonucleotides are close enough together. As NC is believed to be the nucleic acid binding domain of Gag, we might expect Gag to show the same complex behavior. We wished to analyze the stoichiometry of Gag binding to oligonucleotides without this complication due to tertiary complex formation. We have therefore analyzed Gag binding to extremely low oligonucleotide density on SPR chips. Such low densities of oligonucleotides are difficult to accurately quantitate. We have determined by Fourier transform ion cyclotron (FTICR) mass spectrometry that four molecules of NC bind to d(TG)(10) (a 20-base oligonucleotide). We developed a method of calibrating low-density surfaces using NC calibration injections. Knowing the maximal response and the stoichiometry of binding, we can precisely determine the amount of oligonucleotide immobilized at these very-low-density surfaces (<1 Response Unit). Using this approach, we have measured the binding of Gag to d(TG)(10). Gag binds to a 20-mer with a stoichiometry of greater than 4. This suggests that once Gag is bound to the immobilized oligonucleotide, additional Gag molecules can bind to this complex.  相似文献   

18.
Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein–protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.  相似文献   

19.
Ono A  Waheed AA  Joshi A  Freed EO 《Journal of virology》2005,79(22):14131-14140
Human immunodeficiency virus type 1 (HIV-1) particle production, a process driven by the Gag polyprotein precursor, occurs on the plasma membrane in most cell types. The plasma membrane contains cholesterol-enriched microdomains termed lipid rafts, which can be isolated as detergent-resistant membrane (DRM). Previously, we and others demonstrated that HIV-1 Gag is associated with DRM and that disruption of Gag-raft interactions impairs HIV-1 particle production. However, the determinants of Gag-raft association remain undefined. In this study, we developed a novel epitope-based Gag multimerization assay to examine whether Gag assembly is essential for its association with lipid rafts. We observed that membrane-associated, full-length Gag is poorly detected by immunoprecipitation relative to non-membrane-bound Gag. This poor detection is due to assembly-driven masking of Gag epitopes, as denaturation greatly improves immunoprecipitation. Gag mutants lacking the Gag-Gag interaction domain located in the N terminus of the nucleocapsid (NC) were efficiently immunoprecipitated without denaturation, indicating that the epitope masking is caused by higher-order Gag multimerization. We used this assay to examine the relationship between Gag assembly and Gag binding to total cellular membrane and DRM. Importantly, a multimerization-defective NC mutant displayed wild-type levels of membrane binding and DRM association, indicating that NC-mediated Gag multimerization is dispensable for association of Gag with membrane or DRM. We also demonstrate that different properties of sucrose and iodixanol membrane flotation gradients may explain some discrepancies regarding Gag-raft interactions. This report offers new insights into the association of HIV-1 Gag with membrane and with lipid rafts.  相似文献   

20.
The retroviral structural protein, Gag, is capable of independently assembling into virus-like particles (VLPs) in living cells and in vitro. Immature VLPs of human immunodeficiency virus type 1 (HIV-1) and of Rous sarcoma virus (RSV) are morphologically distinct when viewed by transmission electron microscopy (TEM). To better understand the nature of the Gag-Gag interactions leading to these distinctions, we constructed vectors encoding several RSV/HIV-1 chimeric Gag proteins for expression in either insect cells or vertebrate cells. We used TEM, confocal fluorescence microscopy, and a novel correlative scanning EM (SEM)-confocal microscopy technique to study the assembly properties of these proteins. Most chimeric proteins assembled into regular VLPs, with the capsid (CA) domain being the primary determinant of overall particle diameter and morphology. The presence of domains between matrix and CA also influenced particle morphology by increasing the spacing between the inner electron-dense ring and the VLP membrane. Fluorescently tagged versions of wild-type RSV, HIV-1, or murine leukemia virus Gag did not colocalize in cells. However, wild-type Gag proteins colocalized extensively with chimeric Gag proteins bearing the same CA domain, implying that Gag interactions are mediated by CA. A dramatic example of this phenomenon was provided by a nuclear export-deficient chimera of RSV Gag carrying the HIV-1 CA domain, which by itself localized to the nucleus but relocalized to the cytoplasm in the presence of wild type HIV-1 Gag. Wild-type and chimeric Gag proteins were capable of coassembly into a single VLP as viewed by correlative fluorescence SEM if, and only if, the CA domain was derived from the same virus. These results imply that the primary selectivity of Gag-Gag interactions is determined by the CA domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号