首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC50 values of 1-5 microm and to disassemble preformed PHFs at DC50 values of 2-4 microm. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.  相似文献   

2.
We investigated whether a peptide fragment from the C-terminus of beta-amyloid protein precursor is associated with Alzheimer paired helical filaments (PHFs). Antiserum BR188, to the last 20 amino acids of the precursor, did not cross-react with tau protein, known to be in PHFs. It did react with all five pronase-treated PHF preparations assayed by ELISA and immunogold-labelled the same PHF fibrils that a PHF-specific tau antibody labelled. Neither antibody labelled beta/A4 fibrils. These results suggest that a fragment from the C-terminus of beta-amyloid precursor protein copurifies with pronase-treated PHFs and may play a role in their molecular pathogenesis.  相似文献   

3.
在阿尔茨海默病(A1zheimer’s disease,AD)中微管相关蛋白tau能够产生许多异常翻译后修饰并聚集形成配对螺旋丝(paired helical filament,PHF)。这些tau的修饰包括过磷酸化、异常糖基化、截断等,其中,过磷酸化和异常糖基化是阿尔茨海默氏病等神经退行性疾病神经元纤维化的主要分子发病机制。  相似文献   

4.
One of the hallmarks of Alzheimer's disease is the abnormal state of the microtubule-associated protein tau in neurons. It is both highly phosphorylated and aggregated into paired helical filaments, and it is commonly assumed that the hyperphosphorylation of tau causes its detachment from microtubules and promotes its assembly into PHFs. We have studied the relationship between the phosphorylation of tau by several kinases (MARK, PKA, MAPK, GSK3) and its assembly into PHFs. The proline-directed kinases MAPK and GSK3 are known to phosphorylate most Ser-Pro or Thr-Pro motifs in the regions flanking the repeat domain of tau: they induce the reaction with several antibodies diagnostic of Alzheimer PHFs, but this type of phosphorylation has only a weak effect on tau-microtubule interactions and on PHF assembly. By contrast, MARK and PKA phosphorylate several sites within the repeats (notably the KXGS motifs including Ser262, Ser324, and Ser356, plus Ser320); in addition PKA phosphorylates some sites in the flanking domains, notably Ser214. This type of phosphorylation strongly reduces tau's affinity for microtubules, and at the same time inhibits tau's assembly into PHFs. Thus, contrary to expectations, the phosphorylation that detaches tau from microtubules does not prime it for PHF assembly, but rather inhibits it. Likewise, although the phosphorylation sites on Ser-Pro or Thr-Pro motifs are the most prominent ones on Alzheimer PHFs (by antibody labeling), they are only weakly inhibitory to PHF assembly. This implies that the hyperphosphorylation of tau in Alzheimer's disease is not directly responsible for the pathological aggregation into PHFs; on the contrary, phosphorylation protects tau against aggregation.  相似文献   

5.
Tau protein, a neuronal microtubule-associated protein, forms insoluble fibers ("paired helical filaments") in Alzheimer's disease and other tauopathies. Conflicting views on the structure of the fibers have been proposed recently, ranging from mainly alpha-helical structure to mainly beta-sheet, or a mixture of mostly random coil and beta-sheet. We have addressed this issue by studying tau fibers immunopurified from Alzheimer brain tissue by a conformation-specific antibody and comparing them with fibers reassembled from recombinant tau or tau constructs in vitro, using a combination of electron microscopy and spectroscopic methods. Brain-derived fibers and reassembled fibers both exhibit a typical twisted appearance when examined by electron microscopy. The soluble tau protein is a natively unfolded protein dominated by random coil structure, whereas Alzheimer PHFs and reassembled fibers show a shift toward an increase in the level of beta-structure. The results support a model in which the repeat domain of tau (which lies within the core of PHFs) adopts an increasing level of beta-structure during aggregation, whereas the N- and C-terminal domains projecting away from the PHF core are mostly random coil.  相似文献   

6.
Neuritic amyloid plaques and neurofibrillary tangles, consisting of hyperphosphorylated tau protein, are the hallmarks of Alzheimer disease. It is not clear so far, how both structures are functionally and physiologically connected. We have investigated the role of Aβ1-42 on hyperphosphorylation and aggregation of tau in SY5Y cells by transfection and overexpression with two tau constructs, a shortened wildtype tau (2N4R) and a point mutation tau (P301L), found in fronto-temporal dementia. It was found that the tau protein becomes hyperphosphorylated and forms large aggregates inside cells, visualized by immunofluorescence, after short incubation of 90 min with preaggregated Aβ1-42. In Addition, Aβ1-42 caused a decrease of tau solubility in both tau constructs in this relatively short time period. Taken together, these experiments suggest that pathological preaggregated Aβ1-42 in physiological concentrations quickly induces hyperphosphorylation and pathological structural changes of tau protein and thereby directly linking the 'amyloid hypothesis' to tau pathology, observed in Alzheimer disease.  相似文献   

7.
By using tryptophan scanning mutagenesis, we observed the kinetics and structure of the polymerization of tau into paired helical filaments (PHFs) independently of exogenous reporter dyes. The fluorescence exhibits pronounced blue shifts due to burial of the residue inside PHFs, depending on Trp position. The effect is greatest near the center of the repeat domain, showing that the packing is tightest near the beta-structure inducing hexapeptide motifs. The tryptophan response allows measurement of PHF stability made by different tau isoforms and mutants. Unexpectedly, the stability of PHFs is quite low (denaturation half-points approximately 1.0 m GdnHCl), implying that incipient aggregation should be reversible and that the observed high stability of Alzheimer PHFs is due to other factors. The stability increases with the number of repeats and with tau mutants promoting beta-structure, arguing for a gain of toxic function in frontotemporal dementias. Fluorescence resonance energy transfer (FRET) was used to analyze the distances of Tyr(310) to tryptophans in different positions. The degree of FRET in the soluble protein was position-dependent, with highest signals within the second and third repeats but low or no signals further away. In PHFs most mutants showed FRET, indicating that tight packing results from assembly of tau into PHFs.  相似文献   

8.
Tau, a microtubule associated protein, aggregates into intracellular paired helical filaments (PHFs) by an unknown mechanism in Alzheimer's disease (AD) and other tauopathies. A contributing factor may be a failure to metabolize free cytosolic tau within the neuron. The buildup of tau may then drive the aggregation process through mass action. Therefore, proteases that normally degrade tau are of great interest. A recent genetic screen identified puromycin-sensitive aminopeptidase (PSA) as a potent modifier of tau-induced pathology and suggested PSA as a possible tau-degrading enzyme. Here we have extended these observations using human recombinant PSA purified from Escherichia coli. The enzymatic activity and characteristics of the purified PSA were verified using chromogenic substrates, metal ions, and several specific and nonspecific protease inhibitors, including puromycin. PSA was shown to digest recombinant human full-length tau in vitro, and this activity was hindered by puromycin. The mechanism of amino terminal degradation of tau was confirmed using a novel N-terminal cleavage-specific tau antibody (Tau-C6g, specific for cleavage between residues 13-14) and a C-terminal cleavage-specific tau antibody (Tau-C3). Additionally, PSA was able to digest soluble tau purified from normal human brain to a greater extent than either soluble or PHF tau purified from AD brain, indicating that post-translational modifications and/or polymerization of tau may affect its digestion by PSA. These results are consistent with observations that PSA modulates tau levels in vivo and suggest that this enzyme may be involved in tau degradation in human brain.  相似文献   

9.
The microtubule-associated protein tau is a major component of the paired helical filaments (PHFs) observed in Alzheimer's disease brains. The pathological tau is distinguished from normal tau by its state of phosphorylation, higher apparent M(r) and reaction with certain antibodies. However, the protein kinase(s) have not been characterized so far. Here we describe a protein kinase from brain which specifically induces the Alzheimer-like state in tau protein. The 42 kDa protein belongs to the family of mitogen activated protein kinases (MAPKs) and is activated by tyrosine phosphorylation. It is capable of phosphorylating Ser-Pro and Thr-Pro motifs in tau protein (approximately 14-16 P1 per tau molecule). By contrast, other proline directed Ser/Thr kinases such as p34(cdc2) combined with cyclin A or B have only minor effects on tau phosphorylation. We propose that MAP kinase is abnormally active in Alzheimer brain tissue, or that the corresponding phosphatases are abnormally passive, due to a breakdown of the normal regulatory mechanisms.  相似文献   

10.
Alzheimer’s disease (AD) is characterized by the presence of aggregates of tau protein. Tau truncated by caspase-3 (D421) or tau hyperphosphorylated at Ser396/S404 might play a role in the pathogenesis of AD. Mitochondria are dynamic organelles that modify their size and function through mitochondrial dynamics. Recent studies have shown that alterations of mitochondrial dynamics affect synaptic communication. Therefore, we studied the effects of pathological forms of tau on the regulation of mitochondrial dynamics. We used primary cortical neurons from tau(?/?) knockout mice and immortalized cortical neurons (CN1.4) that were transfected with plasmids containing green fluorescent protein (GFP) or GFP with different tau forms: full-length (GFP-T4), truncated (GFP-T4C3), pseudophosphorylated (GFP-T42EC), or both truncated and pseudophosphorylated modifications of tau (GFP-T4C3-2EC). Cells expressing truncated tau showed fragmented mitochondria compared to cells that expressed full-length tau. These findings were corroborated using primary neurons from tau(?/?) knockout mice that expressed the truncated and both truncated and pseudophosphorylated forms of tau. Interestingly, mitochondrial fragmentation was accompanied by a significant reduction in levels of optic atrophy protein 1 (Opa1) in cells expressing the truncated form of tau. In addition, treatment with low concentrations of amyloid-beta (Aβ) significantly reduced mitochondrial membrane potential, cell viability, and mitochondrial length in cortical cells and primary neurons from tau(?/?) mice that express truncated tau. These results indicate that the presence of tau pathology impairs mitochondrial dynamics by reducing Opa1 levels, an event that could lead to mitochondrial impairment observed in AD.  相似文献   

11.
Neurofibrillary tangles (NFTs) are pathological hallmarks of several neurodegenerative disorders, including Alzheimer's disease (AD). NFTs are composed of microtubule-binding protein tau, which assembles to form paired helical filaments (PHFs) and straight filaments. Here we show by atomic force microscopy that AD brain tissue and in vitro tau form granular and fibrillar tau aggregates. CD spectral analysis and immunostaining with conformation-dependent antibodies indicated that tau may undergo conformational changes during fibril formation. Enriched granules generated filaments, suggesting that granular tau aggregates may be an intermediate form of tau fibrils. The amount of granular tau aggregates was elevated in prefrontal cortex of Braak stage I cases compared to that of Braak stage 0 cases, suggesting that granular tau aggregation precedes PHF formation. Thus, granular tau aggregates may be a relevant marker for the early diagnosis of tauopathy. Reducing the level of these aggregates may be a promising therapy for tauopathies and for promoting healthy brain aging.  相似文献   

12.
Alzheimer disease is characterized by abnormal protein deposits in the brain, such as extracellular amyloid plaques and intracellular neurofibrillary tangles. The tangles are made of a protein called tau comprising 441 residues in its longest isoform. Tau belongs to the class of natively unfolded proteins, binds to and stabilizes microtubules, and partially folds into an ordered β-structure during aggregation to Alzheimer paired helical filaments (PHFs). Here we show that it is possible to overcome the size limitations that have traditionally hampered detailed nuclear magnetic resonance (NMR) spectroscopy studies of such large nonglobular proteins. This is achieved using optimal NMR pulse sequences and matching of chemical shifts from smaller segments in a divide and conquer strategy. The methodology reveals that 441-residue tau is highly dynamic in solution with a distinct domain character and an intricate network of transient long-range contacts important for pathogenic aggregation. Moreover, the single-residue view provided by the NMR analysis reveals unique insights into the interaction of tau with microtubules. Our results establish that NMR spectroscopy can provide detailed insight into the structural polymorphism of very large nonglobular proteins.  相似文献   

13.
Tau is one of the two main proteins involved in the pathology of Alzheimer's disease via formation of beta-sheet rich intracellular aggregates named paired helical filaments (PHFs). Given that tau is a natively unfolded protein with no folded core (even upon binding to physiological partners such as microtubules), its structural analysis by high-resolution techniques has been difficult. In this study, employing solution small-angle X-ray scattering from the full length isoforms and from a variety of deletion and point mutants the conformation of tau in solution is structurally characterized. A recently developed ensemble optimization method was employed to generate pools of random models and to select ensembles of coexisting conformations, which fitted simultaneously the scattering data from the full length protein and deletion mutants. The analysis of the structural properties of these selected ensembles allowed us to extract information about residual structure in different domains of the native protein. The short deletion mutants containing the repeat domain (considered the core constituent of the PHFs) are significantly more extended than random coils, suggesting an extended conformation of the repeat domain. The longer tau constructs are comparable in size with the random coils, pointing to long-range contacts between the N- and C-termini compensating for the extension of the repeat domain. Moreover, most of the aggregation-promoting mutants did not show major differences in structure from their wild-type counterparts, indicating that their increased pathological effect is triggered only after an aggregation core has been formed.  相似文献   

14.
In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to clarify the mechanism of PHF formation. Although several reports on the regulation of tau assembly have been published, it is not yet clear whether in vivo PHFs are composed of beta-structures or alpha-helices. Since the four-repeat microtubule-binding domain (4RMBD) of the tau protein has been considered to play an essential role in PHF formation, its heparin-induced assembly propensity was investigated by the thioflavin fluorescence method to clarify what conformation is most preferred for the assembly. We analyzed the assembly propensity of 4RMBD in Tris-HCl buffer with different trifluoroethanol (TFE) contents, because TFE reversibly induces the transition of the random structure to the alpha-helical structure in an aqueous solution. Consequently, it was observed that the 4RMBD assembly is most significantly favored to proceed in the 10-30% TFE solution, the concentration of which corresponds to the activated transition state of 4RMBD from a random structure to an alpha-helical structure, as determined from the circular dichroism (CD) spectral changes. Since such an assembly does not occur in a buffer containing TFE of < 10% or > 40%, the intermediate conformation between the random and alpha-helical structures could be most responsible for the PHF formation of 4RMBD. This is the first report to clarify that the non-native alpha-helical intermediate in transition from random coil is directly associated with filament formation at the start of PHF formation.  相似文献   

15.
The tau protein plays an important role in some neurodegenerative diseases including Alzheimer's disease (AD). Neurofibrillary tangles (NFTs), a biological marker for AD, are aggregates of bundles of paired helical filaments (PHFs). In general, the alpha-sheet structure favors aberrant protein aggregates. However, some reports have shown that the alpha-helix structure is capable of triggering the formation of aberrant tau protein aggregates and PHFs have a high alpha-helix content. In addition, the third repeat fragment in the four-repeat microtubule-binding domain of the tau protein (residues 306-336: VQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQ, according to the longest tau protein) adopts a helical structure in trifluoroethanol (TFE) and may be a self-assembly model in the tau protein. In the human brain, there is a very small quantity of copper, which performs an important function. In our study, by means of matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy, the binding properties of copper (II) ion to the R3 peptide derived from the third repeat fragment (residues 318-335: VTSKCGSLGNIHHKPGGG) have been investigated. The results show that copper ions bind to the R3 peptide. CD spectra, ultraviolet (UV)-visible absorption spectra, and MALDI-TOF MS show pH dependence and stoichiometry of Cu2+ binding. Furthermore, CD spectra and NMR spectroscopy elucidate the copper binding sites located in the R3 peptide. Finally, CD spectra reveal that the R3 peptide adopts a mixture structure of random structures, alpha-helices, and beta-turns in aqueous solutions at physiological pH. At pH 7.5, the addition of 0.25 mol eq of Cu2+ induces the conformational change from the mixture mentioned above to a monomeric helical structure, and a beta-sheet structure forms in the presence of 1 mol eq of Cu2+. As alpha-helix and beta-sheet structures are responsible for the formation of PHFs, it is hypothesized that Cu2+ is an inducer of self-assembly of the R3 peptide and makes the R3 peptide form a structure like PHF. Hence, it is postulated that Cu2+ plays an important role in the aggregation of the R3 peptide and tau protein and that copper (II) binding may be another possible involvement in AD.  相似文献   

16.
Alzheimer's disease (AD) is characterized by the presence of two histopathological hallmarks; the senile plaques, or extracellular deposits mainly composed of amyloid-β peptide (Aβ), and the neurofibrillary tangles, or intraneuronal inclusions composed of hyperphosphorylated tau protein. Since Aβ aggregates are found in the pathological cases, several strategies are under way to develop drugs that interact with Aβ to reduce its assembly. One of them is 3-amino-1-propane sulfonic acid (Tramiprosate, 3-APS, Alzhemed?), that was developed as a sulfated glycosaminoglycan mimetic, that could interact with Aβ peptide, preventing its aggregation. However, little is known about the action of 3-APS on tau protein aggregation. In this work, we have tested the action of 3-APS on cell viability, microtubule network, actin organization and tau aggregation. Our results indicate that 3-APS favours tau aggregation, in tau transfected non-neuronal cells, and in neuronal cells. We also found that 3-APS does not affect the binding of tau to microtubules but may prevent the formation of tau-actin aggregates. We like to emphasize the importance of testing on both types of pathology (amyloid and tau) the potential drugs to be used for AD treatment.  相似文献   

17.
Alzheimer's disease (AD) is characterized neuropathologically by intracellular neurofibrillary tangles (NFTs) formed of tau-based paired helical filaments (PHFs) and extracellular beta-amyloid plaques. The degree of Alzheimer dementia correlates with the severity of PHFs and NFTs. As an intraneuronal accumulation of oxidatively damaged proteins has been found in the brains of patients with AD, a dysfunction of the proteasomal system, which degrades damaged proteins, has been assumed to cause protein aggregation and therefore neurodegeneration in AD. In this study, we revealed that such proteasome dysfunction in AD brain results from the inhibitory binding of PHF-tau to proteasomes. We analysed the proteasome activity in brains from patients with AD and age-matched controls, and observed a significant decrease to 56% of the control level in the straight gyrus of patients with AD. This loss of activity was not associated with a decrease in the proteasome protein. PHF-tau co-precipitated during proteasome immunoprecipitation and proteasome subunits could be co-isolated during isolation of PHFs from AD brain. Furthermore, the proteasome activity in human brains strongly correlated with the amount of co-precipitated PHF-tau during immunoprecipitation of proteasome. Incubation of isolated proteasomes with PHF-tau isolated from AD brain, and with PHFs after in vitro assembly from human recombinant tau protein, resulted in a distinct inhibition of proteasome activity by PHF-tau. As this inhibition of proteasome activity was sufficient to induce neuronal degeneration and death, we suggest that PHF-tau is able directly to induce neuronal damage in the AD brain.  相似文献   

18.
Alzheimer’s disease (AD) is the leading cause of dementia, a condition that gradually destroys brain cells and leads to progressive decline in mental functions. The disease is characterized by accumulation of misfolded neuronal proteins, amyloid and tau, into insoluble aggregates known as extracellular senile plaques and intracellular neurofibrillary tangles, respectively. However, only tau pathology appears to correlate with the progression of the disease and it is believed to play a central role in the progression of neurodegeneration. In AD, tau protein undergoes various types of posttranslational modifications, most notably hyperphosphorylation and truncation. Using four proteomics approaches we aimed to uncover the key steps leading to neurofibrillary degeneration and thus to identify therapeutic targets for AD. Functional neuroproteomics was employed to generate the first transgenic rat model of AD by expressing a truncated misordered form of tau, “Alzheimer’s tau”. The rat model showed that Alzheimer’s tau toxic gain of function is responsible for the induction of abnormal tau cascade and is the driving force in the development of neurofibrillary degeneration. Structural neuroproteomics allowed us to determine partial 3D structure of the Alzheimer’s filament core at a resolution of 1.6 Å. Signaling neuroproteomics data lead to the identification and characterization of relevant phosphosites (the tau phosphosignalome) contributing to neurodegeneration. Interaction neuroproteomics revealed links to a new group of proteins interacting with Alzheimer’s tau (tau interactome) under normal and pathological conditions, which would provide novel drug targets and novel biomarkers for treatment of AD and other tauopathies.  相似文献   

19.
Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases.  相似文献   

20.
Abstract : Immunoaffinity-purified paired helical filaments (PHFs) from Alzheimer's disease (AD) brain homogenates contain an associated protein kinase activity that is able to induce the phosphorylation of PHF proteins on addition of exogenous MgCl2 and ATP. PHF kinase activity is shown to be present in immunoaffinity-purified PHFs from both sporadic and familial AD, Down's syndrome, and Pick's disease but not from normal brain homogenates. Although initial studies failed to show that the kinase was able to induce the phosphorylation of tau, additional studies presented in this article show that only cyclic AMP-dependent protein kinase-pretreated recombinant tau is a substrate for the PHF kinase activity. Deletional mutagenesis, phosphopeptide mapping, and site-directed mutagenesis have identified the PHF kinase phosphorylation sites as amino acids Thr361 and Ser412 in htau40. In addition, the cyclic AMP-dependent protein kinase phosphorylation sites that direct the PHF kinase have been mapped to amino acids Ser356 and Ser409 in htau40. Additional data demonstrate that these hierarchical phosphorylations in the extreme C terminus of tau allow for the incorporation of recombinant tau into exogenously added AD-derived PHFs, providing evidence that certain unique phosphorylations of tau may play a role in the pathogenesis of neurofibrillary pathology in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号