首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Immunopathogenesis of dengue virus infection   总被引:19,自引:0,他引:19  
Dengue virus infection causes dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), whose pathogeneses are not clearly understood. Current hypotheses of antibody-dependent enhancement, virus virulence, and IFN-gamma/TNFalpha-mediated immunopathogenesis are insufficient to explain clinical manifestations of DHF/DSS such as thrombocytopenia and hemoconcentration. Dengue virus infection induces transient immune aberrant activation of CD4/CD8 ratio inversion and cytokine overproduction, and infection of endothelial cells and hepatocytes causes apoptosis and dysfunction of these cells. The coagulation and fibrinolysis systems are also activated after dengue virus infection. We propose a new hypothesis for the immunopathogenesis for dengue virus infection. The aberrant immune responses not only impair the immune response to clear the virus, but also result in overproduction of cytokines that affect monocytes, endothelial cells, and hepatocytes. Platelets are destroyed by crossreactive anti-platelet autoantibodies. Dengue-virus-induced vasculopathy and coagulopathy must be involved in the pathogenesis of hemorrhage, and the unbalance between coagulation and fibrinolysis activation increases the likelihood of severe hemorrhage in DHF/DSS. Hemostasis is maintained unless the dysregulation of coagulation and fibrinolysis persists. The overproduced IL-6 might play a crucial role in the enhanced production of anti-platelet or anti-endothelial cell autoantibodies, elevated levels of tPA, as well as a deficiency in coagulation. Capillary leakage is triggered by the dengue virus itself or by antibodies to its antigens. This immunopathogenesis of DHF/DSS can account for specific characteristics of clinical, pathologic, and epidemiological observations in dengue virus infection.  相似文献   

2.
Dengue virus causes leakage of the vascular endothelium, resulting in dengue hemorrhagic fever and dengue shock syndrome. The endothelial cell lining of the vasculature regulates capillary permeability and is altered by immune and chemokine responses which affect fluid barrier functions of the endothelium. Our findings indicate that human endothelial cells are highly susceptible to infection by dengue virus (type 4). We found that dengue virus productively infects ~80% of primary human endothelial cells, resulting in the rapid release of ~10(5) virions 1 day postinfection. Analysis of potential inhibitors of dengue virus entry demonstrated that antibodies and ligands to integrins and cellular receptors were unable to inhibit dengue virus infection of endothelial cells. In contrast, pretreating cells with heparin or heparan sulfate resulted in a 60 to 80% reduction in dengue virus-infected cells, and pretreatment of endothelial cells with heparinase III or protease reduced dengue infectivity by >80%. Dengue virus bound specifically to resin immobilized heparin, and binding was competitively inhibited by excess heparin but not other ligands. Collectively, these findings suggest that dengue virus specifically attaches to heparan sulfate-containing proteoglycan receptors on endothelial cells. Following attachment to human endothelial cell receptors, dengue virus causes a highly productive infection that has the potential to increase viral dissemination and viremia. This provides the potential for dengue virus-infected endothelial cells to directly alter barrier functions of the endothelium, contribute to enhancement of immune cell activation, and serve as potential targets of immune responses which play a central role in dengue pathogenesis.  相似文献   

3.
Vascular endothelium: the battlefield of dengue viruses   总被引:1,自引:0,他引:1  
Increased vascular permeability without morphological damage to the capillary endothelium is the cardinal feature of dengue haemorrhagic fever (DHF)/dengue shock syndrome (DSS). Extensive plasma leakage in various tissue spaces and serous cavities of the body, including the pleural, pericardial and peritoneal cavities in patients with DHF, may result in profound shock. Among various mechanisms that have been considered include immune complex disease, T-cell-mediated, antibodies cross-reacting with vascular endothelium, enhancing antibodies, complement and its products, various soluble mediators including cytokines, selection of virulent strains and virus virulence, but the most favoured are enhancing antibodies and memory T cells in a secondary infection resulting in cytokine tsunami. Whatever the mechanism, it ultimately targets vascular endothelium (making it a battlefield) leading to severe dengue disease. Extensive recent work has been done in vitro on endothelial cell monolayer models to understand the pathophysiology of vascular endothelium during dengue virus (DV) infection that may be translated to help understand the pathogenesis of DHF/DSS. The present review provides a broad overview of the effects of DV infection and the associated host responses contributing towards alterations in vascular endothelial cell physiology and damage that may be responsible for the DHF/DSS.  相似文献   

4.
登革病毒属黄病毒属,可通过蚊虫传播,感染人体后可引发一系列临床症状,从轻微发热到严重的并发症,称为登革热、登革出血热以及登革休克综合征。过去50年,全球登革热感染病例增加了约30倍。目前,全球热带、亚热带地区约占世界2/5的人口存在感染风险。由于缺乏有效的治疗药物,疫苗研究已成为登革热疾病防控的重心。然而,由于缺乏对病毒致病机理及病毒感染免疫应答深入的了解,候选疫苗的研发受到阻碍。但经过几十年的努力,疫苗研究取得了明显进展。目前正在研究的登革病毒疫苗依托各种技术平台,种类多样,对正处于临床前研究及临床试验阶段的不同类型疫苗进行阐述。  相似文献   

5.
Dengue fever, caused by infection with dengue virus, is not a new disease, but recently because of its serious emerging health threats, coupled with possible dire consequences including death, it has aroused considerable medical and public health concerns worldwide. Today, dengue is considered one of the most important arthropod-borne viral diseases in humans in terms of morbidity and mortality. Globally, it is estimated that approximate 50 to 100 million new dengue virus infections occur annually. Among these, there are 200,000 to 500,000 cases of potential life-threatening dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS), characterized by thrombocytopenia and increased vascular permeability. The death rate associated with the more severe form DHF/DSS is approximately 5%, predominantly in children under the age of 15. Although intensive efforts have been made to study the early clinical pathophysiology of dengue infection with the objective to identify the potential cause of DHF, results or data that have accumulated from different regions of the world involving studies of different ethnicity groups are inconsistent at present in terms of identifying a unified hypothesis for the pathogenesis of DHF/DSS. Thus, the potential mechanisms involved in the pathogenesis of DHF and DSS remain elusive. The purpose of this review is to identify alternate factors, such as innate immune parameters, hyper-thermal factors, conditioning of neutralizing antibody, concept of vector transmission, and physical status of virus in viremic patients that may play a role in the induction of DHF and DSS, which might have directly or indirectly contributed to the discrepancies that are noted in the literature reported to date. It is the hope that identification of an alternative explanation for the pathogenesis of DHF/DSS will pave the way for the institution of new strategies for the prevention of this complicated disease.  相似文献   

6.
Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.  相似文献   

7.
Dengue virus (DENV) infection can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage and abnormal hemorrhage are the two major pathogenic changes found in these patients. From previous studies, it is known that both antibodies and cytokines induced in response to DENV infection are involved in the immunopathogenesis of DHF/DSS. However, the role of viral factors during DENV infection remains unclear. Nonstructural protein 1 (NS1), which is secreted in the sera of patients, is a useful diagnostic marker for acute DENV infection. Nevertheless, the roles of NS1 and its antibodies in the pathogenesis of DHF/DSS are unclear. The focus of this review is to evaluate the possible contributions of NS1 and the antibodies it induces to vascular leakage and abnormal hemorrhage during DENV infection, which may provide clues to better understanding the pathogenesis of DHF/DSS.  相似文献   

8.
Although endothelial cells have been speculated to be a target in the pathogenesis of dengue hemorrhagic fever (DHF), there has been little evidence linking dengue virus infection to any alteration in endothelial cell function. In this study, we show that human umbilical vein endothelial cells become activated when exposed to culture fluids from dengue virus-infected peripheral blood monocytes. Maximum activation was achieved with culture fluids from monocytes in which virus infection was enhanced by the addition of dengue virus-immune serum, thus correlating with epidemiological evidence that prior immunity to dengue virus is a major risk factor for DHF. Activation was strongest for endothelial cell expression of VCAM-1 and ICAM-1. In contrast, activation of endothelial cell E-selectin expression appeared to be more transient, as indicated by its detection at 3 h, but not at 16 h, of treatment. Treatment of monocyte culture fluids with anti-tumor necrosis factor alpha (TNF-alpha) antibody largely abolished the activation effect (as measured by endothelial cell expression of ICAM-1), whereas treatment with IL-1beta receptor antagonist had a much smaller inhibitory effect on activation. Endothelial cells inoculated directly with dengue virus or with virus-antibody combinations were poorly infectable (compared to Vero cells or peripheral blood monocytes), and virus-inoculated endothelial cells showed no increased expression of VCAM-1, ICAM-1, or E-selectin. Taken together, the results strongly indicate that dengue virus can modulate endothelial cell function by an indirect route, in which a key intermediary is TNF-alpha released from virus-infected monocytes.  相似文献   

9.
During the 1981 dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) Cuban epidemic, bronchial asthma (BA) was frequently found as a personal or family antecedent in dengue hemorrhagic fever patients. Considering that antibody dependent enhancement (ADE) plays an important role in the etiopathogenic mechanism of DHF/DSS, we decide to study the Dengue 2 virus (D2V) capability of replication in peripheral blood leukocytes (PBL) from asthmatic patients and healthy persons. In 90% of asthmatic patients and 53.8% of control group it was obtained PBL with a significant D2V enhancing activity (X2 p < 0.01). Power enhancement was higher in asthmatic group. This is the first in vitro study relating BA and the dengue 2 virus immuno enhancement. The results obtained support the role of BA as a risk factor for DHF/DSS as already described on epidemiological data.  相似文献   

10.
Dengue virus (DENV) is an emerging mosquito-borne pathogen that causes cytokine-mediated alterations in the barrier function of the microvascular endothelium, leading to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). We observed that DENV (serotype 2) productively infects primary (HMVEC-d) and immortalized (HMEC-1) human dermal microvascular endothelial cells, despite the absence of well-described DENV receptors, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) or the mannose receptor on the cell surface. However, heparan sulfate proteoglycans (HSPGs) were highly expressed on these cells and pre-treatment of HMEC-1 cells with heparinase II or with glycosaminoglycans reduced DENV infectivity up to 90%, suggesting that DENV uses HSPGs as attachment receptor on microvascular endothelial cells. Sulfated Escherichia coli K5 derivatives, which are structurally similar to heparin/heparan sulfate but lack anticoagulant activity, were able to block DENV infection of HMEC-1 and HMVEC-d cells in the nanomolar range. The highly sulfated K5-OS(H) and K5-N,OS(H) inhibited virus attachment and subsequent entry into microvascular endothelial cells by interacting with the viral envelope (E) protein, as shown by surface plasmon resonance (SPR) analysis using the receptor-binding domain III of the E protein.  相似文献   

11.
Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). It has been suggested that patients with an elevated level of the free soluble form of dengue virus (DV) nonstructural protein 1 (sNS1) are at risk of developing DHF. To understand the role of sNS1 in blood, we searched for the host molecule with which NS1 interacts in human plasma by affinity purification using a GST-fused NS1. Complement inhibitory factor clusterin (Clu), which naturally inhibits the formation of terminal complement complex (TCC), was identified by mass spectrometry. A recombinant sNS1 produced from 293T cells and sNS1 from DV-infected Vero cells interacted with human Clu. Since an activated complement system reportedly causes vascular leakage, the interaction between sNS1 and Clu may contribute to the progression of DHF.  相似文献   

12.
Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7(-/-)) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ~50- and ~10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7(-/-) mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7(-/-) mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome.  相似文献   

13.
Lack of an appropriate animal model for dengue virus (DEN), which causes dengue fever and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), has impeded characterization of the mechanisms underlying the disease pathogenesis. The cardinal feature of DHF/DSS, the severe form of DEN infection, is increased vascular permeability. To develop a murine model that is more relevant to DHF/DSS, a novel DEN strain, D2S10, was generated by alternately passaging a non-mouse-adapted DEN strain between mosquito cells and mice, thereby mimicking the natural transmission cycle of the virus between mosquitoes and humans. After infection with D2S10, mice lacking interferon receptors died early without manifesting signs of paralysis, carried infectious virus in both non-neuronal and neuronal tissues, and exhibited signs of increased vascular permeability. In contrast, mice infected with the parental DEN strain developed paralysis at late times after infection, contained detectable levels of virus only in the central nervous system, and displayed normal vascular permeability. In the mice infected with D2S10, but not the parental DEN strain, significant levels of serum tumor necrosis factor alpha (TNF-alpha) were produced, and the neutralization of TNF-alpha activity prevented early death of D2S10-infected mice. Sequence analysis comparing D2S10 to its parental strain implicated a conserved region of amino acid residues in the envelope protein as a possible source for the D2S10 phenotype. These results demonstrate that D2S10 causes a more relevant disease in mice and that TNF-alpha may be one of several key mediators of severe DEN-induced disease in mice. This report represents a significant advance in animal models for severe DEN disease, and it begins to provide mechanistic insights into DEN-induced disease in vivo.  相似文献   

14.
Dengue virus presents a growing threat to public health in the developing world. Four major serotypes of dengue virus have been characterized, and epidemiological evidence shows that dengue hemorrhagic fever (DHF), the more serious manifestation of the disease, occurs more frequently upon reinfection with a second serotype. We have studied dengue virus-specific T-cell responses in Thai children. During acute infection, few dengue-responsive CD8+ T cells were recovered; most of those present showed an activated phenotype and were undergoing programmed cell death. Many dengue-specific T cells were of low affinity for the infecting virus and showed higher affinity for other, probably previously encountered strains. Profound T-cell activation and death may contribute to the systemic disturbances leading to DHF, and original antigenic sin in the T-cell responses may suppress or delay viral elimination, leading to higher viral loads and increased immunopathology.  相似文献   

15.
16.
Dengue virus (DENV) is a mosquito-borne pathogen that causes a spectrum of diseases including life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage is a common clinical crisis in DHF/DSS patients and highly associated with increased endothelial permeability. The presence of vascular leakage causes hypotension, circulatory failure, and disseminated intravascular coagulation as the disease progresses of DHF/DSS patients, which can lead to the death of patients. However, the mechanisms by which DENV infection caused the vascular leakage are not fully understood. This study reveals a distinct mechanism by which DENV induces endothelial permeability and vascular leakage in human endothelial cells and mice tissues. We initially show that DENV2 promotes the matrix metalloproteinase-9 (MMP-9) expression and secretion in DHF patients’ sera, peripheral blood mononuclear cells (PBMCs), and macrophages. This study further reveals that DENV non-structural protein 1 (NS1) induces MMP-9 expression through activating the nuclear factor κB (NF-κB) signaling pathway. Additionally, NS1 facilitates the MMP-9 enzymatic activity, which alters the adhesion and tight junction and vascular leakage in human endothelial cells and mouse tissues. Moreover, NS1 recruits MMP-9 to interact with β-catenin and Zona occludens protein-1/2 (ZO-1 and ZO-2) and to degrade the important adhesion and tight junction proteins, thereby inducing endothelial hyperpermeability and vascular leakage in human endothelial cells and mouse tissues. Thus, we reveal that DENV NS1 and MMP-9 cooperatively induce vascular leakage by impairing endothelial cell adhesion and tight junction, and suggest that MMP-9 may serve as a potential target for the treatment of hypovolemia in DSS/DHF patients.  相似文献   

17.

Background

HLA class I and class II alleles have been shown to be associated with the development of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) in different populations. However, the majority of studies have been based on limited numbers of patients. In this study we aimed to investigate the HLA-class I and class II alleles that are positively and negatively associated with the development of DSS in a cohort of patients with DHF and also the alleles associated with development of DHF during primary dengue infections in a Sri Lankan population.

Methodology/Principal Findings

The allele frequencies of HLA class I and class II alleles were compared in 110 patients with DHF and 119 individuals from the population who had never reported a symptomatic dengue infection at the time of recruitment. We found that HLA-A*31 (corrected P = 0.01) and DRB1*08 (corrected P = 0.009) were associated with susceptibility to DSS when infected with the dengue virus, during secondary dengue infection. The frequency of DRB1*08 allele was 28.7 times higher than in the normal population in patients with DSS. HLA-A*31 allele was increased 16.6 fold in DHF who developed shock when compared to those who did not develop shock. A*24 (corrected P = 0.03) and DRB1*12 (corrected P = 0.041) were strongly associated with the development of DHF during primary dengue infection.

Conclusions/Significance

These data suggest that certain HLA alleles confer susceptibility/protection to severe dengue infections. As T cell epitope recognition depend on the HLA type of an individual, it would be now important to investigate how epitope specific T cells associate with primary and secondary dengue infections and in severe dengue infections.  相似文献   

18.
Dengue hemorrhagic fever (DHF), the severe manifestation of dengue virus (DV) infection characterized by plasma leakage, is more common in secondary DV infections in previously infected individuals and is associated with high levels of immune activation. To determine the Ag specificity of this immune response, we studied the response to an HLA-B*07-restricted T cell epitope, residues 221-232 of the DV NS3 protein, in 10 HLA-B*07(+) Thai children who were studied during and after acute DV infections. Peptide-specific T cells were detected in 9 of 10 subjects. The frequency of peptide-specific T cells was higher in subjects who had experienced DHF than in those who had experienced DF. We also detected peptide-specific T cells in PBMC obtained at the time of the acute DV infection in 2 of 5 subjects. These data suggest that the NS3 (221-232) epitope is an important target of CD8(+) T cells in secondary DV infection and that the activation and expansion of DV-specific T cells is greater in subjects with DHF than in those with dengue fever. These findings support the hypothesis that activation of DV-specific CD8(+) T cells plays an important role in the pathogenesis of DHF.  相似文献   

19.
Heme oxygenase (HO)-1, the inducible isoform of the first and rate-limiting enzyme of heme degradation, affords anti-inflammatory protection via its cell-type-specific effects in endothelial cells (ECs). In dengue hemorrhagic fever (DHF), which is the life-threatening form of dengue virus (DV) infection, endothelial interactions of cross-reactive antibodies against the DV nonstructural glycoprotein-1 (NS1) are associated with endothelial dysfunction. In this study, we investigated whether anti-NS1 antibodies might regulate HO-1 gene expression in human ECs. Serum from DHF patients with high anti-NS1 titers and a monoclonal anti-NS1 antibody upregulated HO-1 gene expression in human umbilical vein ECs, which was blocked by purified NS1 antigen. Immunoprecipitation studies showed that anti-NS1 antibodies specifically bound to the oxidoreductase protein disulfide isomerase (PDI) on ECs. Moreover, anti-NS1-mediated HO-1 induction was reduced by inhibition of PDI enzyme activity. Reactive oxygen species, which were generated by NADPH oxidase and in turn activated the phosphatidylinositol 3-kinase (PI3K)/Akt cascade, were involved in this upregulation of HO-1 gene expression. Finally, apoptosis of ECs caused by anti-NS1 antibodies was increased by pharmacological inhibition of HO-1 enzyme activity. In conclusion, HO-1 gene expression is upregulated by anti-NS1 antibodies via activation of a redox-dependent PDI/PI3K/Akt-mediated pathway in human ECs.  相似文献   

20.
Chuang YC  Lei HY  Liu HS  Lin YS  Fu TF  Yeh TM 《Cytokine》2011,54(2):222-231
Dengue virus (DENV) infection can cause mild dengue fever or severe dengue hemorrhage fever (DHF) and dengue shock syndrome (DSS). Serum levels of the macrophage migration inhibitory factor (MIF) have been shown to be correlated with severity and mortality in DENV patients, but the pathogenic roles of MIF in DHF/DSS are still unclear. Increase in vascular permeability is an important hallmark of DHF/DSS. In this study, we found that DENV infection of the human hepatoma cell line (Huh 7) induced MIF production. Conditioned medium collected from DENV-infected Huh 7 cells enhanced the permeability of the human endothelial cell line (HMEC-1) which was reduced in the presence of a MIF inhibitor, ISO-1 or medium from DENV-infected MIF knockdown Huh 7 cells. To further identify whether MIF can alter vascular permeability, we cloned and expressed both human and murine recombinant MIF (rMIF) and tested their effects on vascular permeability both in vitro and in vivo. Indirect immunofluorescent staining showed that the tight junction protein ZO-1 of HMEC-1 was disarrayed in the presence of rMIF and partially recovered when cells were treated with ISO-1 or PI3K/MEK-ERK/JNK signaling pathway inhibitors such as Ly294002, U0126, and SP600215. In addition, ZO-1 disarray induced by MIF was also recovered when CD74 or CXCR2/4 expression of HMEC-1 were inhibited. Last but not least, the vascular permeabilities of the peritoneal cavity and dorsal cutaneous capillary were also increased in mice treated with rMIF. Taken together; these results suggest that MIF induced by DENV infection may contribute to the increase of vascular permeability during DHF/DSS. Therapeutic intervention of MIF by its inhibitor or neutralizing antibodies may prevent DENV-induced lethality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号