首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 738 毫秒
1.
The aim of this study was to elucidate the mechanism of folate transport in the placenta. A study of folate was carried out to determine which carriers transport folates in the human choriocarcinoma cell line BeWo, a model cell line for the placenta. We investigated the effects of buffer pH and various compounds on folate uptake. In the first part of the study, the expression levels of the mRNA of the folate receptor alpha (FRalpha), the reduced folate carrier (RFC), and heme carrier protein 1 (HCP1) were determined in BeWo cells by RT-PCR analysis. Folate uptake into BeWo cells was greater under an acidic buffer condition than under a neutral one. Structure analogs of folates inhibited folate uptake under all buffer pH conditions, but anion drugs (e.g., pravastatin) inhibited folate uptake only under an acidic buffer condition. Although thiamine pyrophosphate (TPP), a substrate of RFC, had no effect on folate uptake, hemin (a weak inhibitor of folate uptake via HCP1) decreased folate uptake to about 80% of the control level under an acidic buffer condition. Furthermore, kinetic analysis showed that hemin inhibited the low-affinity phase of folate uptake under an acidic buffer condition. We conclude that pH-dependent folate uptake in BeWo cells is mediated by at least two carriers. RFC is not involved in folate uptake, but FRalpha (high affinity phase) and HCP1 (low affinity phase) transport folate in BeWo cells.  相似文献   

2.
Haem released from digestion and breakdown of meat products provides an important source of dietary iron, which is readily absorbed in the proximal intestine. The recent cloning and characterization of a haem carrier protein 1 (HCP 1) has provided a candidate intestinal haem transporter. The current studies describe the expression and functional analysis of HCP1 in cultured Caco-2 cells, a commonly used model of human intestinal cells. HCP1 mRNA expression in other cell types was also studied. The uptake of 55Fe labeled haem was determined in cells under different experimental conditions and HCP1 expression was measured by RT-PCR and immunohistochemistry. mRNA and protein expressions increased in Caco-2 cells transduced with HCP1 adenoviral plasmid, and consequently 55Fe haem uptake was higher in these cells. Haem uptake was also increased in fully differentiated Caco-2 cells compared to undifferentiated cells. Preincubation of cells with desferrioxamine (DFO, to deplete cells of iron) had no effect on HCP1 expression or haem uptake. Treatment with CdCl2 (to induce haem oxygenase, HO-1) enhanced HCP1 expression and increased haem uptake into the cells. HCP1 expression and function were found to be adaptive to the rate of haem degradation by HO-1. Furthermore, HCP1 expression in different cells implies a functional role in tissues other than the duodenum.  相似文献   

3.
The aim of this study was to elucidate the mechanism of folate transport in the placenta over the course of pregnancy. We found that folate receptor alpha (FRalpha) and reduced folate carrier (RFC) localized on the apical side of human placental villi. Since folate binding to placental brush-border membrane vesicles (BBMVs) was strongly inhibited by phosphatidylinositol-specific phospholipase C (PI-PLC) treatment, it is possible that FRalpha, a glycosyl phosphatidylinositol linked glycoprotein, is a candidate for folate uptake from maternal blood to the placenta. Moreover, additional inhibitory effects of thiamine pyrophosphate (TPP) and hemin on folate uptake after PI-PLC treatment suggested that not only FRalpha but also RFC and heme carrier protein 1 (HCP1) are involved in the folate transport mechanism in the human placenta. It was also found that accumulation of folate after intravenous injection increased with the progress of gestation in the rat placenta and the fetus. Furthermore, increases in the expression levels of mRNA of rFRalpha, rRFC, and rHCP1 in the rat placenta during pregnancy were observed. These findings suggest that FRalpha, RFC, and HCP1 are important carriers of folate in the placenta during pregnancy. The results of this study suggest that increases in the expression levels of FRalpha, RFC, and HCP1 in the placenta play an important role in the response to increased need for folate for the placenta and fetus during development with the progress of gestation.  相似文献   

4.
Heme oxygenase 1 overexpression increases iron fluxes in caco-2 cells   总被引:2,自引:0,他引:2  
Heme oxygenase-1 is a microsomal enzyme that, when induced by stress, protects the cells from oxidative injury. Heme oxygenase-1 participates in the cleavage of the heme ring producing biliverdin, CO and ferrous Fe. The released Fe becomes part of intracellular Fe pool and can be stored in ferritin or released by an iron exporter. The mechanism by which heme enters cells is not completely understood, although it had been suggested that it might be internalized by an endocytosis process. In this study, we expressed a full-length Heme oxygenase-1 cDNA in Caco-2 cells and measured intracellular iron content, heme-iron uptake and transport and immunolocalization of heme oxygenase-1 in these cells. We found that heme oxygenasc-1 expressing cells showed increased apical heme iron uptake and transepithelial transport when compared to control cells. These results suggested that heme oxygenase-1 mediates heme iron influx and efflux in intestinal cells.  相似文献   

5.
It is known that heme iron and inorganic iron are absorbed differently. Heme iron is found in the diet mainly in the form of hemoglobin and myoglobin. The mechanism of iron absorption remains uncertain. This study focused on the heme iron uptake by Caco-2 cells from a hemoglobin digest and its response to different iron concentrations. We studied the intracellular Fe concentration and the effect of time, K+ depletion, and cytosol acidification on apical uptake and transepithelial transport in cells incubated with different heme Fe concentrations. Cells incubated with hemoglobin-digest showed a lower intracellular Fe concentration than cells grown with inorganic Fe. However, uptake and transepithelial transport of Fe was higher in cells incubated with heme Fe. Heme Fe uptake had a low V max and K m as compared to inorganic Fe uptake and did not compete with non-heme Fe uptake. Heme Fe uptake was inhibited in cells exposed to K+ depletion or cytosol acidification. Heme oxygenase 1 expression increased and DMT1 expression decreased with higher heme Fe concentrations in the media. The uptake of heme iron is a saturable and temperature-dependent process and, therefore, could occur through a mechanism involving both a receptor and the endocytic pathway.  相似文献   

6.
Proton-coupled folate transporter/heme carrier protein 1 (PCFT/HCP1) has recently been identified as a transporter that mediates the translocation of folates across the cellular membrane by a proton-coupled mechanism and suggested to be the possible molecular entity of the carrier-mediated intestinal folate transport system. To further clarify its role in intestinal folate transport, we examined the functional characteristics of rat PCFT/HCP1 (rPCFT/HCP1) expressed in Xenopus laevis oocytes and compared with those of the carrier-mediated folate transport system in the rat small intestine evaluated by using the everted tissue sacs. rPCFT/HCP1 was demonstrated to transport folate and methotrexate more efficiently at lower acidic pH and, as evaluated at pH 5.5, with smaller Michaelis constant (K(m)) for the former (2.4 microM) than for the latter (5.7 microM), indicating its characteristic as a proton-coupled folate transporter that favors folate than methotrexate as substrate. rPCFT/HCP1-mediated folate transport was found to be inhibited by several but limited anionic compounds, such as sulfobromophthalein and sulfasalazine. All these characteristics of rPCFT/HCP1 were in agreement with those of carrier-mediated intestinal folate transport system, of which the K(m) values were 1.2 and 5.8 microM for folate and methotrexate, respectively, in the rat small intestine. Furthermore, the distribution profile of the folate transport system activity along the intestinal tract was in agreement with that of rPCFT/HCP1 mRNA. This study is the first to clone rPCFT/HCP1, and we successfully provided several lines of evidence that indicate its role as the molecular entity of the intestinal folate transport system.  相似文献   

7.
The Caco-2 cell line is well established as an in vitro model for iron absorption. However, the model does not reflect the regulation of iron absorption by hepcidin produced in the liver. We aimed to develop the Caco-2 model by introducing human liver cells (HepG2) to Caco-2 cells. The Caco-2 and HepG2 epithelia were separated by a liquid compartment, which allowed for epithelial interaction. Ferritin levels in cocultured Caco-2 controls were 21.7±10.3 ng/mg protein compared to 7.7±5.8 ng/mg protein in monocultured Caco-2 cells. The iron transport across Caco-2 layers was increased when liver cells were present (8.1%±1.5% compared to 3.5%±2.5% at 120 μM Fe). Caco-2 cells were exposed to 0, 80 and 120 μM Fe and responded with increased hepcidin production at 120 μM Fe (3.6±0.3 ng/ml compared to 2.7±0.3 ng/ml). The expression of iron exporter ferroportin in Caco-2 cells was decreased at the hepcidin concentration of 3.6 ng/ml and undetectable at external addition of hepcidin (10 ng/ml). The apical transporter DMT1 was also undetectable at 10 ng/ml but was unchanged at the lower concentrations. In addition, we observed that sourdough bread, in comparison to heat-treated bread, increased the bioavailability of iron despite similar iron content (53% increase in ferritin formation, 97% increase in hepcidin release). This effect was not observed in monocultured Caco-2 cells. The Caco-2/HepG2 model provides an alternative approach to in vitro iron absorption studies in which the hepatic regulation of iron transport must be considered.  相似文献   

8.
Thein vitro uptake of 5-methyltetrahydrofolate (5-MeTHF) by rat and human intestine is dose-dependently inhibited by the antidepressant drug fluoxetine (FLX). In rat jejunum rings, 0.2 mM FLX inhibited the uptake of 5-MeTHF (0.25 μM) by 32% (15 min) and 49% (45 min). In brush border membrane vesicles (BBMV) from rat jejunum, 0.2 mM FLX inhibited the folate uptake at the overshoot (90 s) by 40 %. Similar inhibition was observed with human Caco-2 cells and duodenal biopsies. FLX action is exerted on the active transport component of the folate uptake, since the drug has no effect when the passive diffusion component becomes prominent by high substrate concentration, or by 0-4 ºC incubation or by addition of the folate transport inhibitor DIDS (1mM). The kinetic analysis with rat BBMV suggests a non-competitive inhibition of the 5-MeTHF transport by FLX, with apparent values for KM = 0.89 μM, Vmax = 1.89 pmol/mg prot./10 s, and KI = 0.21 mM. After 21 days of treatment with FLX (10 mg/kg/day), the folate uptake by jejunum rings or by BBMV from the treated rats was diminished, and the folate levels in erythrocytes and serum were also decreased.  相似文献   

9.
Alkaline phosphatase (ALP) refers to a group of nonspecific phosphomonoesterases located primarily in cell plasma membrane. It has been described in different cell lines that ecto-ALP is directly or indirectly involved in the modulation of organic cation transport. We aimed to investigate, in Caco-2 cells, a putative modulation of 1-methyl-4-phenylpyridinium (MPP(+)) apical uptake by an ecto-ALP activity. Ecto-ALP activity and (3)H-MPP(+) uptake were evaluated in intact Caco-2 cells (human colon adenocarcinoma cell line), in the absence and presence of a series of drugs. The activity of membrane-bound ecto-ALP expressed on the apical surface of Caco-2 cells was studied at physiological pH using p-nitrophenylphosphate as substrate. The results showed that Caco-2 cells express ALP activity, characterized by an ecto-oriented active site functional at physiological pH. Genistein (250 micro M), 3-isobutyl-1-methylxanthine (1 mM), verapamil (100 micro M), and ascorbic acid (1 mM) significantly increased ecto-ALP activity and decreased (3)H-MPP(+) apical transport in this cell line. Orthovanadate (100 micro M) showed no effect on (3)H-MPP(+) transport and on ecto-ALP activity. On the other hand, okadaic acid (310 nM) and all trans-retinoic acid (1 micro M) significantly increased (3)H-MPP(+) uptake and inhibited ecto-ALP activity. There is a negative correlation between the effect of drugs upon ecto-ALP activity and (3)H-MPP(+) apical transport (r = -0.9; P = 0.0014). We suggest that apical uptake of organic cations in Caco-2 cells is affected by phosphorylation/dephosphorylation mechanisms, and that ecto-ALP activity may be involved in this process.  相似文献   

10.
Heme-Fe is an important source of dietary iron in humans. Caco-2 cells have been used extensively to study human iron absorption with an emphasis on factors affecting nonheme iron absorption. Therefore, we examined several factors known to affect heme iron absorption. Cells grown in bicameral chambers were incubated with high specific activity [59Fe]heme alone or with 1% globin, BSA, or fatty acid-free BSA (BSA-FA) to examine the effect of protein source on absorption. Heme iron absorption was enhanced by globin and inhibited by BSA and BSA-FA. Absorption of heme iron in cells pretreated for 7 days with serum-free medium containing 1, 25, 50, or 100 microM Fe was higher in the 1-microM-Fe pretreatment group than in all other groups (P < 0.05), showing an effect of iron status. Increased heme concentrations resulted in decreased percent absorbed but increased total heme iron absorption and increased transport rate across the basolateral membrane. Finally, cells treated with 10 microM CdCl2, which induces heme oxygenase, demonstrated higher absorption of [59Fe]heme than control cells (P < 0.05). Our results from Caco-2 cells are in agreement with human studies and make this a promising model for examining intestinal heme iron absorption.  相似文献   

11.
The inhibitory effects of the angiotensin-converting enzyme (ACE)-ANG II-angiotensin type 1 (AT(1)) receptor axis on jejunal glucose uptake and the reduced expression of this system in type 1 diabetes mellitus (T1DM) have been documented previously. The ACE2-ANG-(1-7)-Mas receptor axis is thought to oppose the actions of the ACE-ANG II-AT(1) receptor axis in heart, liver, and kidney. However, the possible involvement of the ACE2-ANG-(1-7)-Mas receptor system on enhanced jejunal glucose transport in T1DM has yet to be determined. Rat everted jejunum and Caco-2 cells were used to determine the effects of ANG-(1-7) on glucose uptake and to study the ACE2-ANG-(1-7)-Mas receptor signaling pathway. Expression of target gene and protein in jejunal enterocytes and human Caco-2 cells were quantified using real-time PCR and Western blotting. T1DM increased jejunal protein and mRNA expression of ACE2 (by 59 and 173%, respectively) and Mas receptor (by 55 and 100%, respectively) in jejunum. One millimolar ANG-(1-7) reduced glucose uptake in jejunum and Caco-2 cells by 30.6 and 30.3%, respectively, effects that were abolished following addition of 1 μM A-779 (a Mas receptor blocker) or 1 μM GF-109203X (protein kinase C inhibitor) to incubation buffer for jejunum or Caco-2 cells, respectively. Finally, intravenous treatment of animals with ANG-(1-7) significantly improved oral glucose tolerance in T1DM but not control animals. In conclusion, enhanced activity of the ACE2-ANG-(1-7)-Mas receptor axis in jejunal enterocytes is likely to moderate the T1DM-induced increase in jejunal glucose uptake resulting from downregulation of the ACE-ANG II-AT(1) receptor axis. Therefore, altered activity of both ACE and ACE2 systems during diabetes will determine the overall rate of glucose transport across the jejunal epithelium.  相似文献   

12.
Uptake of folate by L1210 cells in mediated by a transport system whose primary substrate is adenine. This conclusion is based upon the following evidence: (a) Folate uptake is inhibited competitively by adenine; (b) The Kt for folate transport (430 μM) is comparable to the Ki (450 μM) for folate inhibition of adenine transport; (c) The Kt for adenine transport (21 μM) agrees with the Ki (17 μM) for inhibition of folate transport by adenine; (d) The adenine analogs, 1-methyl-3-isobutylxanthine and 6-mercapto-purine, each inhibit folate and adenine transport to a comparable degree; and (e) Rates of folate and adenine uptake vary in parallel fashion during growth of L1210 cells.  相似文献   

13.
Colorectal cancer (CRC) is one of the most common cancers worldwide. Epidemiological and experimental studies suggest that bile acids may play a role in CRC etiology. Our aim was to characterize the effect of the primary bile acid chenodeoxycholic acid (CDCA) upon(14) C-BT uptake in tumoral (Caco-2) and non-tumoral (IEC-6) intestinal epithelial cell lines. A 2-day exposure to CDCA markedly and concentration-dependently inhibited (14) C-BT uptake by IEC-6 cells (IC(50) = 120 μM), and, less potently, by Caco-2 cells (IC(50) = 402 μM). The inhibitory effect of CDCA upon (14) C-BT uptake did not result from a decrease in cell proliferation or viability. In IEC-6 cells: (1) uptake of (14) C-BT involves both a high-affinity and a low-affinity transporter, and CDCA acted as a competitive inhibitor of the high-affinity transporter; (2) CDCA inhibited both Na(+)-coupled monocarboxylate cotransporter 1 (SMCT1)- and H(+)-coupled monocarboxylate transporter 1 (MCT1)-mediated uptake of (14) C-BT; (3) CDCA significantly increased the mRNA expression level of SMCT1; (4) inhibition of (14) C-BT uptake by CDCA was dependent on CaM, MAP kinase (ERK1/2 and p38 pathways), and PKC activation, and reduced by a reactive oxygen species scavenger. Finally, BT (5 mM) decreased IEC-6 cell viability and increased IEC-6 cell differentiation, and CDCA (100 μM) reduced this effect. In conclusion, CDCA is an effective inhibitor of (14) C-BT uptake in tumoral and non-tumoral intestinal epithelial cells, through inhibition of both H(+) -coupled MCT1- and SMCT1-mediated transport. Given the role played by BT in the intestine, this mechanism may contribute to the procarcinogenic effect of CDCA at this level.  相似文献   

14.
Enterally administered, heme is a good source of iron in humans and other animals, but the metabolism of heme by enterocytes has not been fully characterized. Caco-2 cells in culture provide a useful model for studying cells that resemble small intestinal epithelium, both morphologically and functionally. In this paper we show that heme oxygenase, the rate-controlling enzyme of heme catabolism, is present in abundance in Caco-2 cells, and that levels of its mRNA and activity can be increased by exposure of the cells to heme or metal ions (cadmium, cobalt). Caco-2 cells also contain biliverdin reductase activity which, in the basal state, is similar to that of heme oxygenase (approximately 40 pmole of product per mg protein per minute); however, when heme oxygenase is induced, biliverdin reductase may become rate-limiting for bilirubin production.Abbreviations BVR biliverdin reductase - DMEM Dulbecco's modified Eagles medium - DMSO dimethyl sulfoxide - HO heme oxygenase - 1xSSC a solution of 0.015 M sodium citrate/0.15 sodium chloride  相似文献   

15.
16.
17.
Heme prosthetic groups are vital for all living organisms, but they can also promote cellular injury by generating reactive oxygen species. Therefore, intestinal heme absorption and distribution should be carefully regulated. Although a human intestine brush-border heme receptor/transporter has been suggested, the mechanism by which heme crosses the apical membrane is unknown. After it enters the cell, heme is degraded by heme oxygenase-1 (HO-1), and iron is released. We hypothesized that heme transport is actively regulated in Caco-2 cells. Cells exposed to hemin from the basolateral side demonstrated a higher HO-1 induction than cells exposed to hemin from the apical surface. Hemin secretion was more rapid than absorption, and net secretion occurred against a concentration gradient. Treatment of the apical membrane with trypsin increased hemin absorption by threefold, but basolateral treatment with trypsin had no effect on hemin secretion. Neither apical nor basolateral trypsin changed the paracellular pathway. We conclude that heme is acquired and transported in both absorptive and secretory directions in polarized Caco-2 cells. Secretion is via an active metabolic/transport process. Trypsin applied to the apical surface increased hemin absorption, suggesting that protease activity can uncover a process for heme uptake that is otherwise quiescent. These processes may be involved in preventing iron overload in humans.  相似文献   

18.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   

19.
Divalent Metal Transporter 1 (DMT1) is an apical Fe transporter in the duodenum and is involved in endosomal Fe export. Four protein isoforms have been described for DMT1, two from mRNA with an iron responsive element (IRE) and two from mRNA without it. The sets of two begin in exon 1A or 2. We have characterized copper transport using mouse 2/?IRE DMT1 during regulated ectopic expression. HEK293 cells carrying a TetR:Hyg element were stably transfected with pDEST31 containing a 2/?IRE construct. 64Cu1+ incorporation in doxycycline treated cells exhibited 18.6 and 30.0-fold increases in Cu content, respectively when were exposed to 10 and 100 μM of extracellular Cu. Cu content was ~4-fold above that of parent cells or cells carrying just the vector. 64Cu uptake in transfected cells pre-incubated with 5 μM of Cu-His revealed a Vmax and Km of 11.98 ± 0.52 pmol mg protein?1 min?1 and 2.03 ± 0.03 μM, respectively. Doxycycline-stimulated Cu uptake was linear with time. The rates of apical Cu uptake decreased and transepithelial transport increased when intracellular Cu increased. The optimal pH for Cu transport was 6.5; uptake of Cu was temperature dependent. Silver does not inhibit Cu uptake in cells carrying the vector. In conclusion, Cu uptake in HEK293 cells that over-expressed the 2/?IRE isoform of DMT1 transporter supports our earlier contention that DMT1 transports Cu as Cu1+.  相似文献   

20.
Identification of an intestinal heme transporter   总被引:17,自引:0,他引:17  
Dietary heme iron is an important nutritional source of iron in carnivores and omnivores that is more readily absorbed than non-heme iron derived from vegetables and grain. Most heme is absorbed in the proximal intestine, with absorptive capacity decreasing distally. We utilized a subtractive hybridization approach to isolate a heme transporter from duodenum by taking advantage of the intestinal gradient for heme absorption. Here we show a membrane protein named HCP 1 (heme carrier protein 1), with homology to bacterial metal-tetracycline transporters, mediates heme uptake by cells in a temperature-dependent and saturable manner. HCP 1 mRNA was highly expressed in duodenum and regulated by hypoxia. HCP 1 protein was iron regulated and localized to the brush-border membrane of duodenal enterocytes in iron deficiency. Our data indicate that HCP 1 is the long-sought intestinal heme transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号