首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
An oxidized nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide (NADP+/NAD+) nonspecific L-glutamate dehydrogenase from Bacteroides thetaiotaomicron was purified 40-fold (NADP+ or NAD+ activity) over crude cell extract by heat treatment, (NH4)2SO2 fractionation, diethylaminoethyl-cellulose, Bio-Gel A 1.5m, and hydroxylapatite chromatography. Both NADP+- and NAD+-dependent activities coeluted from all chromatographic treatments. Moreover, a constant ratio of NADP+/NAD+ specific activities was demonstrated at each purification step. Both activities also comigrated in 6% nondenaturing polyacrylamide gels. Affinity chromatography of the 40-fold-purified enzyme using Procion RED HE-3B gave a preparation containing both NADP+- and NAD+-linked activities which showed a single protein band of 48,5000 molecular weight after sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The dual pyridine nucleotide nature of the enzyme was most readily apparent in the oxidative direction. Reductively, the enzyme was 30-fold more active with reduced NADP than with reduced NAD. Nonlinear concave 1/V versus 1/S plots were observed for reduced NADP and NH4Cl. Salts (0.1 M) stimulated the NADP+-linked reaction, inhibited the NAD+-linked reaction, and had little effect on the reduced NADP-dependent reaction. The stimulatory effect of salts (NADP+) was nonspecific, regardless of the anion or cation, whereas the degree of NAD+-linked inhibition decreased in the order to I- greater than Br- greater than Cl- greater than F-. Both NADP+ and NAD+ glutamate dehydrogenase activities were also detected in cell extracts from representative strains of other bacteroides deoxyribonucleic acid homology groups.  相似文献   

2.
The activity of NAD+ and NADP+-linked aldehyde dehydrogenases has been investigated in yeast cells grown under different conditions. As occurs in other dehydrogenase reactions the NAD(P)+-linked enzyme was strongly repressed in all hypoxic conditions; nervetheless, the NADP+-linked enzyme was active. The results suggest that the NAD(P)+ aldehyde dehydrogenase is involved in the oxidation of ethanol to acetyl-CoA, and that when the pyruvate dehydrogenase complex is repressed the NADP+-linked aldehyde dehydrogenase is operative as an alternative pathway from pyruvate to acetyl-CoA: pyruvate leads to acetaldehyde leads to acetate leads to acetyl-Coa. In these conditions the supply of NADPH is advantageous to the cellular economy for biosynthetic purposes. Short term adaptation experiments suggest that the regulation of the levels of the aldehyde dehydrogenase-NAD(P)+ takes place by the de novo synthesis of the enzyme.  相似文献   

3.
Effects of 1-methyl-4-phenylpyridinium ion (MPP+) on the activities of NAD+- or NADP+-linked dehydrogenases in the TCA cycle were studied using mitochondria prepared from mouse brains. Activities of NAD+- and NADP+-linked isocitrate dehydrogenases, NADH- and NADPH-linked glutamate dehydrogenases, and malate dehydrogenase were little affected by 2 mM of MPP+. However, alpha-ketoglutarate dehydrogenase activity was significantly inhibited by MPP+. Kinetic analysis revealed a competitive type of inhibition. Inhibition of alpha-ketoglutarate dehydrogenase may be one of the important mechanisms of MPP+-induced inhibition of mitochondrial respiration, and of neuronal degeneration.  相似文献   

4.
A soluble NAD+-linked isocitrate dehydrogenase has been isolated from Crithidia fasciculata. The enzyme was purified 128-fold, almost to homogeneity, and was highly specific for NAD+ as the coenzyme. There is also a cytoplasmic NADP+-linked and a mitochondrial isocitrate dehydrogenase in the organism. Studies of the physical and kinetic properties of the soluble NAD+-isocitrate dehydrogenase from this organism showed that it resembled microbial NADP+-isocitrate dehydrogenases in general, all of which are cytoplasmic enzymes. The enzyme appeared not to be related to other NAD+-isocitrate dehydrogenases, which are found in the mitochondria of eukaryotic cells. The molecular weight of the soluble NAD+-isocitrate dehydrogenase was 105,000 which is within the range of the values for microbial NADP+-isocitrate dehydrogenases. Similar to the NADP+-isocitrate dehydrogenase in this organism, the enzyme was inhibited in a concerted manner by glyoxalate plus oxalacetate. Kinetic analysis revealed that Mn2+ was involved in the binding of isocitrate to the enzyme. Inhibition of the NAD+-linked isocitrate dehydrogenase by p-chloromercuribenzoate could be prevented by prior incubation of the enzyme with both Mn2+ and isocitrate; however, neither ion alone conferred protection. Free isocitrate, free Mn2+, and the Mn2+-isocitrate complex could all bind to the enzyme. Four different mechanisms with respect to the binding of isocitrate to the enzyme were tested. Of these, the formation of the active enzyme-Mn2+-isocitrate complex from (a) the random binding of Mn2+, isocitrate, and the Mn2+-isocitrate complex, or (b) the binding of Mn2+-isocitrate with free Mn2+ and isocitrate acting as dead-end competitors were both in agreement with these data.  相似文献   

5.
Mitochondria isolated from human term placenta were able to form citrate from malate as the only added substrate. While mitochondria were incubated in the presence of Mn2+ the citrate formation was stimulated significantly both by NAD+ and NADP+ and was inhibited by hydroxymalonate, arsenite, butylmalonate and rotenone. It is concluded that NAD(P)-linked malic enzyme is involved in the conversion of malate to citrate in these mitochondria. It has also been shown that the conversion of cholesterol to progesterone by human term placental mitochondria incubated in the presence of malate was stimulated by NAD+ and NADP+ and inhibited by arsenite and fluorocitrate. This suggests that the stimulation by malate of progesterone biosynthesis depends not only on the generation of NADPH by NAD(P)-linked malic enzyme, but also on NADPH formed during further metabolism of pyruvate to isocitrate which is in turn efficiently oxidized by NADP+-linked isocitrate dehydrogenase.  相似文献   

6.
1. The activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenase were measured in muscles from a large number of animals, in order to provide some indication of the importance of the citric acid cycle in these muscles. According to the differences in enzyme activities, the muscles can be divided into three classes. First, in a number of both vertebrate and invertebrate muscles, the activities of all three enzymes are very low. It is suggested that either the muscles use energy at a very low rate or they rely largely on anaerobic glycolysis for higher rates of energy formation. Second, most insect flight muscles contain high activities of citrate synthase and NAD+-linked isocitrate dehydrogenase, but the activities of the NADP+-linked enzyme are very low. The high activities indicate the dependence of insect flight on energy generated via the citric acid cycle. The flight muscles of the beetles investigated contain high activities of both isocitrate dehydrogenases. Third, other muscles of both vertebrates and invertebrates contain high activities of citrate synthase and NADP+-liniked isocitrate dehydrogenase. Many, if not all, of these muscles are capable of sustained periods of mechanical activity (e.g. heart muscle, pectoral muscles of some birds). Consequently, to support this activity fuel must be supplied continually to the muscle via the circulatory system which, in most animals, also transports oxygen so that energy can be generated by complete oxidation of the fuel. It is suggested that the low activities of NAD+-linked isocitrate dehydrogenase in these muscles may be involved in oxidation of isocitrate in the cycle when the muscles are at rest. 2. A comparison of the maximal activities of the enzymes with the maximal flux through the cycle suggests that, in insect flight muscle, NAD+-linked isocitrate dehydrogenase catalyses a non-equilibrium reaction and citrate synthease catalyses a near-equilibrium reaction. In other muscles, the enzyme-activity data suggest that both citrate synthase and the isocitrate dehydrogenase reactions are near-equilibrium.  相似文献   

7.
Periodate-oxidized NADP+ (o-NADP+), an analogue of the cofactors, is a reversible inhibitor of estradiol 17 beta-dehydrogenase in human placenta. Mode of the inhibition by o-NADP+ appeared to be competitive type (Ki = 0.84 microM) against NAD+ and non-competitive type (Ki = 1.13 microM) against estradiol, respectively. Treatment of the estradiol 17 beta-dehydrogenase with o-NADP+ resulted in time-dependent loss of the enzyme activity. The inactivation exhibited pseudo-first order kinetics (t1/2 = 15 min) and was protected by NAD+ and NADP+. On the other hand, periodate-oxidized ATP inactivated slightly the estradiol 17 beta-dehydrogenase. These results indicate that the residue(s) of lysines is located near the cofactor-binding region of estradiol 17 beta-dehydrogenase of human placenta.  相似文献   

8.
Mitochondria isolated from the heart of cod (Gadus morrhua callarias) oxidized malate as the only exogenous substrate very rapidly. Pyruvate only slightly increased malate oxidation by these mitochondria. This is in contrast with the mitochondria isolated from rat and rabbit heart which oxidized malate very slowly unless pyruvate was added. Arsenite and hydroxymalonate (an inhibitor of malic enzyme) inhibited the respiration rate of mitochondria isolated from cod heart, when malate was the only exogenous substrate. Inhibition caused by hydroxymalonate was reversed by the addition of pyruvate. In the presence of arsenite, malate was converted to pyruvate by cod heart mitochondria. Cod heart mitochondria incubated in the medium containing Triton X-100 catalyzed the reduction of NADP+ in the presence of L-malate and Mn2+ at relatively high rate (about 160 nmoles NADPH formed/min/mg mitochondrial protein). The oxidative decarboxylation of malate was also taking place when NADP+ was replaced by NAD+ (about 25 nmol NADH formed per min per mg mitochondrial protein). These results suggest that the mitochondria contain both NAD+- and NADP+-linked malic enzymes. These two activities were eluted from DEAE-Sephacel as two independent peaks. It is concluded that malic enzyme activity (presumably both NAD+- and NADP+-linked) is responsible for the rapid oxidation of malate (as the only external substrate) by cod heart mitochondria.  相似文献   

9.
Alcohol dehydrogenase has been purified from the cell-free preparation of Thermoanaerobium brockii to homogeneity, employing combined DEAE, Sephadex, and affinity chromatographic procedures. The enzyme is tetrameric having subunit molecular weight of 40.4 x 10(3). The purified alcohol dehydrogenase is capable of utilizing either NAD+ or NADP+ to oxidize primary and secondary alcohols, although it prefers NADP+ as the coenzyme and secondary alcohols as substrates. Inactivation of the enzymic activity by sensitized photooxidation and carboxymethylation implicates the presence of catalytically important histidine and cysteine residues. Kinetic studies indicate that Thermoanaerobium alcohol dehydrogenase catalyzes NADP(+)-linked oxidations of secondary alcohols by an ordered bi-bi mechanism with NADP+ as the leading reactant. The preference of the Thermoanaerobium enzyme for NADP+ is correlated with its low dissociation constants (KA and KiA) and high turnover rate (V/Et). The corresponding kinetic parameters also contribute to the preference of this enzyme for secondary alcohols.  相似文献   

10.
Present evidence suggests that skin is an important organ of prostaglandin metabolism. To clarify its role, the basic kinetics of 15-hydroxyprostaglandin dehydrogenase (PGDH) from rat skin were investigated with either NAD+ of NADP+ as co-substrate. Prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E2 (PGE2) were used as substrates and preliminary studies were made of the inhibitory effects of the reduced co-substrates NADH and NADPH. A radiochemical assay was used in which [3H]PGF2 alpha or [14C]PGE2 were incubated with high-speed supernatant of rat skin homogenates. The substrate and products were then extracted by solvent partition, separated by t.l.c. and quantified by liquid-scintillation counting. At linear reaction rates and at an NAD+ concentration of 10 mM the mean apparent Km for PGF2 alpha was 24 microM with a mean apparent Vmax. of 9.8 nmol/s per litre of reaction mixture. For PGE2 the mean apparent Km was 8 microM, with a mean apparent Vmax, of 2.7 nmol/s per litre of reaction mixture. With NADP+ as a co-substrate at a concentration of 5 mM a mean apparent Km of 23 microM was obtained for PGF2 alpha with a mean apparent Vmax. of 5.2 nmol/s per litre. For PGE2 values of 7.5 microM and 3.0 nmol/s per litre were obtained respectively. These results show that skin contains NAD+- and NADP+-dependent PGDH. An important finding was that the NADP+-linked enzyme gave Km values for PGE2 that were considerably lower than those reported for NADP+-linked PGDH from other tissues. Furthermore, preliminary inhibition studies with the NAD+-linked PGDH system indicate that this enzyme is not only inhibited by NADH, but also by NADPH, a property not previously reported for NAD+-linked PGDH derived from other tissues.  相似文献   

11.
Rat and calf adrenal cortex homogenates were found to contain three different malic enzymes. Two were strictly NADP+-dependent and were localized, one each, in the cytosol and the mitochondrial fractions, respectively. These two enzymes appear to be identical to those described by Simpson and Estabrook (Simpson, E. R., and Estabrook, R. W. (1969) Arch. Biochem. Biophys. 129, 384-395). The third was NAD(P)+-linked and was present in the mitochondrial fraction only. All three malic enzymes separated as distinct bands during electrophoresis on 5 percent polyacrylamide slab gels at pH 9.0. Marker enzymes and the mitochondrial malic enzymes migrated together in intact mitochondria during sucrose density gradient centrifugations despite changes in the equilibrium position of the mitochondria promoted by energy-dependent calcium phosphate accumulation. In adrenal cortex mitochondria subfractionated by the method of Sottocasa et al. (SOTTOCASA, G.L., KUYLENSTIERNA, B., ERNSTER, L., and BERGSTAND, A. (1967) J. Cell Biol. 32, 415-438), both malic enzymes were associated with the inner membrane-matrix space. Sonication solubilized the two malic enzymes along with the matrix space marker enzymes. The NAD(P)+-dependent malic enzyme was purified 100-fold from calf adrenal cortex mitochondria. The final preparation was free of malic dehydrogenase, fumarase, the strictly NADP+-linked malic enzyme and adenylate kinase. Either Mn24 orMg2+ was required for activity and 1 mol of pyruvate was formed for each mole of NAD+ and NADP+ reduced. The pH optima with NAD+ and NADP+ were 6.5 tp 7.0 and 6.0 to 6.5, respectively. Michaelis-Menten kinetics were observed on the alkaline side. Fumarate, succinate, and isocitrate were positive and ATP and ADP were negative modulators of the regulatory enzyme. The modulators did not influence the stoichiometry and they were not metabolized during the reaction. Under Vmax conditions the ratios for the rate of NAD+:NADP+ reduction were 1.76 and 1.15 at pH 7.4 and 6.0, respectively. The apparent Michaelis constants also differed depending on the pH and the coenzyme. At pH 7.4 (in the presence of 5 mM fumarate) and at pH 6.0 (no fumarate) the Km values for (-)-malate, NAD+, and Mn2+ were 1.7, 0.16, and 0.15 mM, and 0.31, 0.06, and 0.09 mM, respectively. At pH 7.4 (5MM fumarate) and pH 6.0 (no fumarate), the Km values for (-)-malate, NADP+, and Mn2+ were 6.5, 0.62, and 0.59 mM, and 0.68. 0.12, and 0.31 mM, respectively. The apparent Ki values for ATP with NAD+ and NADP+ as coenzyme were 0.42 and 0.27 mM, respectively.  相似文献   

12.
The enzyme 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase has been purified 45-fold to apparent homogeneity from the solvent-producing anaerobe Clostridium beijerinckii NRRL B593. The identities of 34 of the N-terminal 35 amino acid residues have been determined. The enzyme exhibited a native M(r) of 213,000 and a subunit M(r) of 30,800. It is specific for the (S)-enantiomer of 3-hydroxybutyryl-CoA. Michaelis constants for NADH and acetoacetyl-CoA were 8.6 and 14 microM, respectively. The maximum velocity of the enzyme was 540 mumol min-1 mg-1 for the reduction of acetoacetyl-CoA with NADH. The enzyme could use either NAD(H) or NADP(H) as a cosubstrate; however, kcat/Km for the NADH-linked reaction was much higher than the apparent value for the NADPH-linked reaction. Also, NAD(H)-linked activity was less sensitive to changes in pH than NADP(H)-linked activity was. In the presence of 9.5 microM NADH, the enzyme was inhibited by acetoacetyl-CoA at concentrations as low as 20 microM, but the inhibition was relieved as the concentration of NADH was increased, suggesting a possible mechanism for modulating the energy efficiency during growth.  相似文献   

13.
1. Skeletal muscle mitochondrial NAD(P)-dependent malic enzyme [EC 1.1.1. 39, L-malate:NAD+ oxidoreductase (decarboxylating)] from herring could use both coenzymes, NAD and NADP, in a similar manner. 2. The coenzyme preference of mitochondrial NAD(P)-dependent malic enzyme was probed using dual wavelength spectroscopy and pairing the natural coenzymes, NAD or NADP with their respective thionicotinamide analogues, s-NADP or s-NAD, that have absorbance maxima in reduced forms at 400 nm. 3. s-NAD and s-NADP were found to be good alternate substrates for NAD(P)-dependent malic enzyme, the apparent Km values for the thioderivatives were similar to those of the corresponding natural coenzymes. 4. ATP produced greater inhibition of the NAD or s-NAD linked reactions than of the NADP or s-NADP-linked reactions of skeletal muscle mitochondrial NAD(P)-dependent malic enzyme. 5. At 5 mM malate concentration and in the presence of 2 mM ATP the NADP-linked reaction is favoured and the activity ratios, V(s-NADP)/V(NAD) or V(NADP)/V(s-NAD), are 6 and 26, respectively.  相似文献   

14.
Crude soluble extracts of Methylococcus capsulatus strain Bath, grown on methane, were found to contain NAD(P)+-linked formaldehyde dehydrogenase activity. Activity in the extract was lost on dialysis against phosphate buffer, but could be restored by supplementing with inactive, heat-treated extract (70 degrees C for 12 min). The non-dialysable, heat-sensitive component was isolated and purified, and has a molecular weight of about 115000. Sodium dodecyl sulphate gel electrophoresis of the protein suggested there were two equal subunits with molecular weights of 57000. The heat-stable fraction, which was necessary for activity of the heat-sensitive protein, was trypsin-sensitive and presumed to be a low molecular weight protein or peptide. A number of thiol compounds and other common cofactors could not replace the component present in the heat-treated soluble extract. The purified formaldehyde dehydrogenase oxidized three other aldehydes with the following Km values: 0.68 mM (formaldehyde); 0.075 mM (glyoxal); 7.0 mM (glycolaldehyde); and 2.0 mM (DL-glyceraldehyde). NAD+ or NADP+ was required for activity, with Km values of 0.063 and 0.155 mM respectively, and could not be replaced by any of the artificial electron acceptors tested. The enzyme was heat-stable at 45 degrees C for at least 10 min and had temperature and pH optima of 45 degrees C and pH 7.2 respectively. A number of metal-binding agents and substrate analogues were not inhibitory. Thiol reagents gave varying degrees of inhibition, the most potent being p-hydroxymercuribenzoate which at 1 mM gave 100% inhibition. The importance of possessing an NAD(P)+-linked formaldehyde dehydrogenase, with respect to M. capsulatus, is discussed.  相似文献   

15.
The pyruvate-to-ethanol pathway in Entamoeba histolytica is unusual when compared with most investigated organisms. Pyruvate decarboxylase (EC 4.1.1.1), a key enzyme for ethanol production, is not found. Pyruvate is converted into acetyl-CoA and CO2 by the enzyme pyruvate synthase (EC 1.2.7.1), which has been demonstrated previously in this parasitic amoeba. Acetyl-CoA is reduced to acetaldehyde and CoA by the enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10) at an enzyme activity of 9 units per g of fresh cells with NADH as a reductant. Acetaldehyde is further reduced by either a previously identified NADP+-linked alcohol dehydrogenase or by a newly found NAD+-linked alcohol dehydrogenase at an enzyme activity of 136 units per g of fresh cells. Ethanol is identified as the product of soluble enzymes of amoeba acting on pyruvate or acetyl-CoA. This result is confirmed by radioactive isotopic, spectrophotometric and gas-chromatographic methods.  相似文献   

16.
Glutamate dehydrogenase (L-glutamate:NAD+ oxidoreductase (deaminating); EC 1.4.1.2) has been purified from Peptostreptococcus asaccharolyticus in a single step using dye-ligand chromatography. The enzyme (GDH) was present in high yields and was stabilized in crude extracts. A subunit molecular weight of 49000 +/- 500 was determined by SDS polyacrylamide gel electrophoresis and six bands were obtained after cross-linking the subunits with dimethyl suberimidate. This bacterial GDH was predominantly NAD+-linked, but was able to utilize both NADP+ and NADPH at 4% of the rates with NAD+ and NADH, respectively. An investigation of the amino acid specificity revealed some similarities with GDH from mammalian sources and some clear differences. The values of apparent Km for the substrates ammonia, 2-oxoglutarate, NADH, NAD+ and glutamate were 18.4, 0.82, 0.066, 0.031 and 6 mM, respectively. The P. asaccharolyticus GDH was not regulated by purine nucleotides, but was subject to strong inhibition with increasing ionic strength.  相似文献   

17.
Two of the three metabolic subtypes of species utilizing C4-pathway photosynthesis are defined by high activities of either NADP malic enzyme (NADP malic enzyme type) or a coenzyme A (CoA)- and acetyl-CoA-activated NAD malic enzyme (NAD malic enzyme type). These enzymes function to decarboxylate malate as an integral part of the photosynthetic process. Leaves of NADP malic enzyme-type species also contain significant NAD-dependent malic enzyme activity. The purpose of the present study was to examine the nature and photosynthetic role of this activity. With Zea mays, this NAD-dependent activity was found to vary widely in fresh leaf extracts. Incubating extracts at 25 °C resulted in a disproportionate increase in NAD activity so that the final ratio of NADP to NAD activity was always about 5. Strong evidence was provided that the NADP and NAD malic enzyme activities in Z. mays extracts were catalyzed by the same enzyme. These activities remained associated during purification and were coincident after polyacrylamide gel electrophoresis. The pH optimum for NAD-dependent activity was about 7.1, compared with 8.3 for NADP malic enzyme activity. Other properties of the NAD-dependent activity are described, a particularly notable feature being the inhibition of this activity by less than 1 μm NADP and NADPH. Evidence is provided that the NADP malic enzyme of several other NADP malic enzyme-type C4 species also has associated activity toward NAD. We concluded that the NAD-dependent malic enzyme activity would have no significant function in photosynthesis.  相似文献   

18.
D C Crans  S M Schelble 《Biochemistry》1990,29(28):6698-6706
Vanadate dimer and tetramer inhibit glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. The inhibition by a vanadate mixture containing vanadate monomer, dimer, tetramer, and pentamer was determined by measuring the rates of glucose 6-phosphate oxidation and reduction of NAD (or NADP) catalyzed by glucose-6-phosphate dehydrogenase. The inhibition by vanadate is competitive with respect to NAD or NADP and noncompetitive (a mixed type) with respect to glucose 6-phosphate (G6P) when NAD or NADP are cofactors. This inhibition pattern varies from that observed with phosphate and thus suggests vanadate interacts differently than a phosphate analogue with the enzyme. 51V NMR spectroscopy was used to directly correlate the inhibition of vanadate solutions to the vanadate dimer and/or tetramer, respectively. The activity of the vanadate oligomer varied depending on the cofactor and which substrate was being varied. The vanadate dimer was the major inhibiting species with respect to NADP. This is in contrast to the vanadate tetramer, which was the major inhibiting species with respect to G6P and with respect to NAD. The inhibition by vanadate when G6P was varied was weak. The competitive inhibition pattern with respect to NAD and NADP suggests the possibility that vanadate oligomers may also inhibit catalysis of other NAD- or NADP-requiring dehydrogenases. Significant concentrations of vanadate dimer and tetramer are only found at fairly high vanadate concentrations, so these species are not likely to represent vanadium species present under normal physiological conditions. It is however possible the vanadate dimer and/or tetramer represent toxic vanadate species.  相似文献   

19.
A method for the quantitative measurement of delta5,3beta-hydroxysteroid dehydrogenase activity in unfixed tissue sections of rat ovary has been described. The method depends on the oxidation of dehydroepiandrosterone (DHEA) and uses nitroblue tetrazolium as the final electron acceptor. Although the dehydrogenase is not a soluble enzyme, polyvinyl alcohol is included in the reaction medium to allow the use of a high substrate concentration whilst employing a low concentration (5%) of dimethyl formamide. The enzyme is equally dependent on NAD+ or NADP+ for its activity and this activity is significantly enhanced by the presence of cyanide. The NADP+ dependence is not abolished by inhibiting nonspecific alkaline phomonoesterase. The activity of delta5,3beta-hydroxysteroid dehydrogenase is completely dependent on a functional sulphydryl group. Furthermore, the enzyme activity is totally inhibited in the presence of a steroid substrate analogue at 10(-4) M.  相似文献   

20.
Thermoproteus tenax possesses two different glyceraldehyde-3-phosphate dehydrogenases, one specific for NADP+ and the other for NAD+. NADP(H) inhibits the NAD+-specific enzyme competetively with respect to NAD+ whereas NAD(H) virtually does not interact with the NADP+-specific enzyme. Both enzymes represent homomeric tetramers with subunit molecular masses of 39 kDa (NADP+-specific enzyme) and 49 kDa (NAD+-specific enzyme), respectively. The NADP+-specific enzyme shows significant homology to the known glyceraldehyde-3-phosphate dehydrogenases from eubacteria and eukaryotes as indicated by partial sequencing. The enzymes are thermostable, the NADP+-specific enzyme with a half-life of 35 min at 100 degrees C, the NAD+-specific enzyme with a half-line of greater than or equal to 20 min at 100 degrees C, depending on the protein concentration. Both enzymes show conformational and functional changes at 60-70 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号