首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
Reasons for possible failure of inoculation to enhance biodegradation   总被引:14,自引:0,他引:14  
Pseudomonas strains capable of mineralizing 2,4-dichlorophenol (DCP) and p-nitrophenol (PNP) in culture media were isolated from soil. One DCP-metabolizing strain mineralized 1.0 and 10 micrograms of DCP but not 2.0 to 300 ng/ml in culture. When added to lake water containing 10 micrograms of DCP per ml, the bacterium did not mineralize the compound, and only after 6 days did it cause the degradation of 1.0 microgram of DCP per ml. The organism did not grow or metabolize DCP when inoculated into sterile lake water, but it multiplied in sterile lake water amended with glucose or with DCP and supplemental nutrients. Its population density declined and DCP was not mineralized when the pseudomonad was added to nonsterile sewage, but the bacterium grew in sterile DCP-amended sewage, although not causing appreciable mineralization of the test compound. Addition of the bacterium to nonsterile soil did not result in the mineralization of 10 micrograms of DCP per g, although mineralization was evident if the inoculum was added to sterile soil. A second DCP-utilizing pseudomonad failed to mineralize DCP when added to the surface of sterile soil, although activity was evident if the inoculum was mixed with the soil. A pseudomonad able to mineralize 5.0 micrograms of PNP per ml in culture did not mineralize the compound in sterile or nonsterile lake water. The bacterium destroyed PNP in sterile sewage and enhanced PNP mineralization in nonsterile sewage. When added to the surface of sterile soil, the bacterium mineralized little of the PNP present at 5.0 micrograms/g, but it was active if mixed well with the sterile soil.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A study was conducted to determine the role of inoculum size of a bacterium introduced into nonsterile lake water in the biodegradation of a synthetic chemical. The test species was a strain of Pseudomonas cepacia able to grow on and mineralize 10 ng to 30 micrograms of p-nitrophenol (PNP) per ml in salts solution. When introduced into water from Beebe Lake at densities of 330 cells per ml, P. cepacia did not mineralize 1.0 microgram of PNP per ml. However, PNP was mineralized in lake water inoculated with 3.3 X 10(4) to 3.6 X 10(5) P. cepacia cells per ml. In lake water containing 1.0 microgram of PNP per ml, a P. cepacia population of 230 or 120 cells per ml declined until no cells were detectable at 13 h, but when the initial density was 4.3 X 10(4) cells per ml, sufficient survivors remained after the initial decline to multiply at the expense of PNP. The decline in bacterial abundance coincided with multiplication of protozoa. Cycloheximide and nystatin killed the protozoa and allowed the bacterium to multiply and mineralize 1.0 microgram of PNP, even when the initial P. cepacia density was 230 or 360 cells per ml. The lake water contained few lytic bacteria. The addition of KH2PO4 or NH4NO3 permitted biodegradation of PNP at low cell densities of P. cepacia. We suggest that a species able to degrade a synthetic chemical in culture may fail to bring about the same transformation in natural waters, because small populations added as inocula may be eliminated by protozoan grazing or may fail to survive because of nutrient deficiencies.  相似文献   

3.
A study was conducted to determine the role of inoculum size of a bacterium introduced into nonsterile lake water in the biodegradation of a synthetic chemical. The test species was a strain of Pseudomonas cepacia able to grow on and mineralize 10 ng to 30 micrograms of p-nitrophenol (PNP) per ml in salts solution. When introduced into water from Beebe Lake at densities of 330 cells per ml, P. cepacia did not mineralize 1.0 microgram of PNP per ml. However, PNP was mineralized in lake water inoculated with 3.3 X 10(4) to 3.6 X 10(5) P. cepacia cells per ml. In lake water containing 1.0 microgram of PNP per ml, a P. cepacia population of 230 or 120 cells per ml declined until no cells were detectable at 13 h, but when the initial density was 4.3 X 10(4) cells per ml, sufficient survivors remained after the initial decline to multiply at the expense of PNP. The decline in bacterial abundance coincided with multiplication of protozoa. Cycloheximide and nystatin killed the protozoa and allowed the bacterium to multiply and mineralize 1.0 microgram of PNP, even when the initial P. cepacia density was 230 or 360 cells per ml. The lake water contained few lytic bacteria. The addition of KH2PO4 or NH4NO3 permitted biodegradation of PNP at low cell densities of P. cepacia. We suggest that a species able to degrade a synthetic chemical in culture may fail to bring about the same transformation in natural waters, because small populations added as inocula may be eliminated by protozoan grazing or may fail to survive because of nutrient deficiencies.  相似文献   

4.
Abstract A study was conducted to determine whether the supply of inorganic phosphorus in lake water was sufficient for the mineralization of p -nitrophenol (PNP) by a Flavobacterium sp. The bacterium grew following its inoculation into sterile lake water amended with only 20 or 200 ng PNP per ml, but depending on when the water sample was taken, either PNP was not mineralized or it was mineralized slowly. PNP at both concentrations was rapidly mineralized if 10 mM P was added. The degradation of 200 ng PNP per ml was most rapid if the lake water was amended with 10 mM P, it proceeded more slowly with 1 mM P and the initiation of mineralization was delayed to equal extents if the sterile water received 0.1 mM, 0.01 mM or no P. The possible significance of these findings to biodegradation in natural waters is discussed.  相似文献   

5.
A study was conducted of possible reasons for acclimation of microbial communities to the mineralization of organic compounds in lake water and sewage. The acclimation period for the mineralization of 2 ng of p-nitrophenol (PNP) or 2,4-dichlorophenoxyacetic acid per ml of sewage was eliminated when the sewage was incubated for 9 or 16 days, respectively, with no added substrate. The acclimation period for the mineralization of 2 ng but not 200 ng or 2 micrograms of PNP per ml was eliminated when the compound was added to lake water that had been first incubated in the laboratory. Mineralization of PNP by Flavobacterium sp. was detected within 7 h at concentrations of 20 ng/ml to 2 micrograms/ml but only after 25 h at 2 ng/ml. PNP-utilizing organisms began to multiply logarithmically after 1 day in lake water amended with 2 micrograms of PNP per ml, but substrate disappearance was only detected at 8 days, at which time the numbers were approaching 10(5) cells per ml. The addition of inorganic nutrients reduced the length of the acclimation period from 6 to 3 days in sewage and from 6 days to 1 day in lake water. The prior degradation of natural organic materials in the sewage and lake water had no effect on the acclimation period for the mineralization of PNP, and naturally occurring inhibitors that might delay the mineralization were not present. The length of the acclimation phase for the mineralization of 2 ng of PNP per ml was shortened when the protozoa in sewage were suppressed by eucaryotic inhibitors, but it was unaffected or increased if the inhibitors were added to lake water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A study was conducted of possible reasons for acclimation of microbial communities to the mineralization of organic compounds in lake water and sewage. The acclimation period for the mineralization of 2 ng of p-nitrophenol (PNP) or 2,4-dichlorophenoxyacetic acid per ml of sewage was eliminated when the sewage was incubated for 9 or 16 days, respectively, with no added substrate. The acclimation period for the mineralization of 2 ng but not 200 ng or 2 micrograms of PNP per ml was eliminated when the compound was added to lake water that had been first incubated in the laboratory. Mineralization of PNP by Flavobacterium sp. was detected within 7 h at concentrations of 20 ng/ml to 2 micrograms/ml but only after 25 h at 2 ng/ml. PNP-utilizing organisms began to multiply logarithmically after 1 day in lake water amended with 2 micrograms of PNP per ml, but substrate disappearance was only detected at 8 days, at which time the numbers were approaching 10(5) cells per ml. The addition of inorganic nutrients reduced the length of the acclimation period from 6 to 3 days in sewage and from 6 days to 1 day in lake water. The prior degradation of natural organic materials in the sewage and lake water had no effect on the acclimation period for the mineralization of PNP, and naturally occurring inhibitors that might delay the mineralization were not present. The length of the acclimation phase for the mineralization of 2 ng of PNP per ml was shortened when the protozoa in sewage were suppressed by eucaryotic inhibitors, but it was unaffected or increased if the inhibitors were added to lake water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A study was conducted to determine the significance of starvation resistance to the ability of a species to survive in sewage and lake water. Tests were conducted for periods of up to 14 days. Rhizobium meliloti and one fluorescent and one nonfluorescent strain of Pseudomonas were resistant to starvation because their population sizes did not fall appreciably in buffer and sterile lake water, and the first two maintained high numbers after being added to sterile sewage. Cell densities of these bacterial species dropped slowly in nonsterile sewage, and more cells of these three organisms than of the other test organisms remained in nonsterile lake water. Rhizobium leguminosarum was moderately resistant to starvation because its numbers fell slowly in buffer and sterile lake water and did not change appreciably in sterile sewage. The abundance of Micrococcus flavus added to buffer and sterile lake water did not change, but the density of M. flavus declined in nonsterile lake water. The abundance of R. leguminosarum fell in nonsterile lake water and nonsterile sewage. Streptococcus faecalis, Staphylococcus aureus, an asporogenous strain of Bacillus subtilis, and Streptococcus sp. were susceptible to starvation because their populations were markedly reduced in buffer. Populations of the last three species declined rapidly in nonsterile and sterile samples of lake water and sewage. S. faecalis declined rapidly when added to nonsterile lake water and sewage and sterile lake water but not when added to sterile sewage, the persistence in the last instance probably being associated with the availability of organic nutrients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A study was conducted to determine the significance of starvation resistance to the ability of a species to survive in sewage and lake water. Tests were conducted for periods of up to 14 days. Rhizobium meliloti and one fluorescent and one nonfluorescent strain of Pseudomonas were resistant to starvation because their population sizes did not fall appreciably in buffer and sterile lake water, and the first two maintained high numbers after being added to sterile sewage. Cell densities of these bacterial species dropped slowly in nonsterile sewage, and more cells of these three organisms than of the other test organisms remained in nonsterile lake water. Rhizobium leguminosarum was moderately resistant to starvation because its numbers fell slowly in buffer and sterile lake water and did not change appreciably in sterile sewage. The abundance of Micrococcus flavus added to buffer and sterile lake water did not change, but the density of M. flavus declined in nonsterile lake water. The abundance of R. leguminosarum fell in nonsterile lake water and nonsterile sewage. Streptococcus faecalis, Staphylococcus aureus, an asporogenous strain of Bacillus subtilis, and Streptococcus sp. were susceptible to starvation because their populations were markedly reduced in buffer. Populations of the last three species declined rapidly in nonsterile and sterile samples of lake water and sewage. S. faecalis declined rapidly when added to nonsterile lake water and sewage and sterile lake water but not when added to sterile sewage, the persistence in the last instance probably being associated with the availability of organic nutrients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The inability of many organisms to degrade pollutants at low concentrations is a problem when selecting inocula for bioremediation of sites with these low concentrations. Thus, a study was conducted to determine the effect of low concentrations of p-nitrophenol (PNP) on growth of four PNP-degrading bacteria and their abilities to metabolize low concentrations of the compound in culture and samples from an oligotrophic lake. PNP did not increase the growth rates of Flavobacterium sp. M4, Pseudomonas sp. K, Flavobacterium sp. M1, and Pseudomonas sp. SP3 at concentrations of less than 2, 4, 10, and 100 ng/ml, respectively, when it was the sole added carbon source in culture, but it stimulated multiplication at higher concentrations. In liquid culture with the nitro compound as sole added carbon source, the four bacteria extensively mineralized PNP at 50 and 100 ng/ml, and three of the four degraded much of the substrate at 25 ng/ml. Pseudomonas sp. SP3 mineralized more than 20% but the two Flavobacterium strains converted less than 10% of the substrate to C02 at 10 ng/ml, and none of the three mineralized more than 5% at 1 and 5 ng PNP/ml. Under conditions where more than 99% of the radioactivity from 14C-PNP added at 1 ng/ml remained in solution, two of the isolates formed organic products. Pseudomonas sp. K had no activity at 1, 5, and 10 ng/ml. In contrast, when each of the bacteria was separately inoculated into samples of water from an oligotrophic lake and from a well in which PNP was not biodegraded, the bacteria were able to mineralize as little as 1 ng PNP/ml. The addition to a salts solution of 10 ng of glucose per ml resulted in mineralization of PNP at concentrations too low to be mineralized when the nitro compound was the sole source of added carbon. Bacteria may thus be able to mineralize substrates in natural waters at concentrations below those suggested by tests conducted in culture media, possibly because of the availability of other carbon sources for the bacteria.Offprint requests to: M. Alexander.  相似文献   

10.
Two strains of Pseudomonas able to grow on phenol or p-nitrophenol (PNP) were isolated from sewage. Pseudomonas sp. PN101 mineralized and formed nitrite from PNP but did not mineralize phenol, and Pseudomonas sp. PH111 mineralized phenol but not PNP. Phenol increased the lag period before Pseudomonas sp. PN101 grew on and mineralized PNP, but this toxicity was reduced by inoculation of the medium with Pseudomonas sp. PH111. PNP inhibited growth of Pseudomonas sp. PH111 and slightly increased the length of the acclimation period for the mineralization of phenol by the bacterium. Inoculation of Pseudomonas sp. PN101 into solutions containing PNP and phenol increased the lag period prior to growth of Pseudomonas sp. PH111 on phenol and markedly lengthened the lag period for its mineralization of phenol. Coinciding with this delay in the onset of phenol degradation was the accumulation of an organic compound formed from PNP by Pseudomonas sp. PN101. This compound was not mineralized by the phenol-degrading bacterium. The data suggest that bacteria may interact during the decomposition of chemical mixtures by destroying or by forming toxins that affect the biodegradation of individual components of those mixtures.  相似文献   

11.
The addition of phosphate, nitrate, or sulfate (each at 10 mM) decreased the acclimation period for the mineralization of low concentrations of p-nitrophenol (PNP) in lake water. Added phosphate shortened the acclimation period for biodegradation of 2 ng to 2 micrograms of PNP per ml in various lake water samples and of 2,4-dichlorophenoxyacetate at 100 ng/ml. Added P enhanced the rate of growth of PNP-mineralizing microorganisms in waters containing 200 ng or 2 micrograms of PNP per ml. We suggest that the effect of P on the acclimation period results from an increase in the growth rate of the initially small population of microorganisms able to mineralize the synthetic chemicals.  相似文献   

12.
The addition of phosphate, nitrate, or sulfate (each at 10 mM) decreased the acclimation period for the mineralization of low concentrations of p-nitrophenol (PNP) in lake water. Added phosphate shortened the acclimation period for biodegradation of 2 ng to 2 micrograms of PNP per ml in various lake water samples and of 2,4-dichlorophenoxyacetate at 100 ng/ml. Added P enhanced the rate of growth of PNP-mineralizing microorganisms in waters containing 200 ng or 2 micrograms of PNP per ml. We suggest that the effect of P on the acclimation period results from an increase in the growth rate of the initially small population of microorganisms able to mineralize the synthetic chemicals.  相似文献   

13.
A study was conducted to determine the role of concentration of the test chemical, of a second organic compound, and of mutation in the acclimation period before the mineralization of organic compounds in sewage. The acclimation period for the mineralization in sewage of 2 micrograms of 4-nitrophenol (PNP) per liter increased from 6 to 12 days in the presence of 10 mg of 2,4-dinitrophenol per liter. The extension of the acclimation period was equivalent to the time required for mineralization of 2,4-dinitrophenol. In contrast, the time for acclimation for the degradation of 2 micrograms of PNP per liter was reduced when 10 or 100 mg of phenol per liter was added. Lower phenol levels increased the acclimation period to 8 days. The length of the acclimation period for PNP mineralization decreased as the initial concentration of PNP increased from 2 micrograms to 100 mg/liter. The acclimation period for phenol mineralization was lengthened as the phenol concentration increased from 100 to 1,400 mg/liter. The length of the acclimation period for PNP and phenol biodegradation was reproducible, but it varied among replicates for the biodegradation of other nitro-substituted compounds added to sewage or lake water, suggesting that a mutation was responsible for acclimation to these other compounds. The acclimation period may thus reflect the time required for the destruction of toxins, and it also may be affected by the concentration of the test compound or the presence of other substrates.  相似文献   

14.
A study was conducted to determine the role of concentration of the test chemical, of a second organic compound, and of mutation in the acclimation period before the mineralization of organic compounds in sewage. The acclimation period for the mineralization in sewage of 2 micrograms of 4-nitrophenol (PNP) per liter increased from 6 to 12 days in the presence of 10 mg of 2,4-dinitrophenol per liter. The extension of the acclimation period was equivalent to the time required for mineralization of 2,4-dinitrophenol. In contrast, the time for acclimation for the degradation of 2 micrograms of PNP per liter was reduced when 10 or 100 mg of phenol per liter was added. Lower phenol levels increased the acclimation period to 8 days. The length of the acclimation period for PNP mineralization decreased as the initial concentration of PNP increased from 2 micrograms to 100 mg/liter. The acclimation period for phenol mineralization was lengthened as the phenol concentration increased from 100 to 1,400 mg/liter. The length of the acclimation period for PNP and phenol biodegradation was reproducible, but it varied among replicates for the biodegradation of other nitro-substituted compounds added to sewage or lake water, suggesting that a mutation was responsible for acclimation to these other compounds. The acclimation period may thus reflect the time required for the destruction of toxins, and it also may be affected by the concentration of the test compound or the presence of other substrates.  相似文献   

15.
The kinetics of simultaneous mineralization of p-nitrophenol (PNP) and glucose by Pseudomonas sp. were evaluated by nonlinear regression analysis. Pseudomonas sp. did not mineralize PNP at a concentration of 10 ng/ml but metabolized it at concentrations of 50 ng/ml or higher. The Ks value for PNP mineralization by Pseudomonas sp. was 1.1 micrograms/ml, whereas the Ks values for phenol and glucose mineralization were 0.10 and 0.25 micrograms/ml, respectively. The addition of glucose to the media did not enable Pseudomonas sp. to mineralize 10 ng of PNP per ml but did enhance the degradation of higher concentrations of PNP. This enhanced degradation resulted from the simultaneous use of glucose and PNP and the increased rate of growth of Pseudomonas sp. on glucose. The Monod equation and a dual-substrate model fit these data equally well. The dual-substrate model was used to analyze the data because the theoretical assumptions of the Monod equation were not met. Phenol inhibited PNP mineralization and changed the kinetics of PNP mineralization so that the pattern appeared to reflect growth, when in fact growth was not occurring. Thus, the fitting of models to substrate depletion curves may lead to erroneous interpretations of data if the effects of second substrates on population dynamics are not considered.  相似文献   

16.
The kinetics of simultaneous mineralization of p-nitrophenol (PNP) and glucose by Pseudomonas sp. were evaluated by nonlinear regression analysis. Pseudomonas sp. did not mineralize PNP at a concentration of 10 ng/ml but metabolized it at concentrations of 50 ng/ml or higher. The Ks value for PNP mineralization by Pseudomonas sp. was 1.1 micrograms/ml, whereas the Ks values for phenol and glucose mineralization were 0.10 and 0.25 micrograms/ml, respectively. The addition of glucose to the media did not enable Pseudomonas sp. to mineralize 10 ng of PNP per ml but did enhance the degradation of higher concentrations of PNP. This enhanced degradation resulted from the simultaneous use of glucose and PNP and the increased rate of growth of Pseudomonas sp. on glucose. The Monod equation and a dual-substrate model fit these data equally well. The dual-substrate model was used to analyze the data because the theoretical assumptions of the Monod equation were not met. Phenol inhibited PNP mineralization and changed the kinetics of PNP mineralization so that the pattern appeared to reflect growth, when in fact growth was not occurring. Thus, the fitting of models to substrate depletion curves may lead to erroneous interpretations of data if the effects of second substrates on population dynamics are not considered.  相似文献   

17.
A sensitive and rapid method was developed to measure the mineralization of 14C-labeled organic compounds at picogram-per-milliliter or lower levels in samples of natural waters and sewage. Mineralization was considered to be equivalent to the loss of radioactivity from solutions. From 93 to 98% of benzoate, benzylamine, aniline, phenol, and 2,4-dichlorophenoxyacetate at one or more concentrations below 300 ng/ml was mineralized in samples of lake waters and sewage, indicating little or no incorporation of carbon into microbial cells. Assimilation of 14C by the cells mineralizing benzylamine in lake water was not detected. Mineralization in lake waters was linear with time for aniline at 5.7 pg to 500 ng/ml, benzylamine at 310 ng/ml, phenol at 102 fg to 10 mg/ml, 2,4-dichlorophenoxyacetate at 1.5 pg/ml, and di-(2-ethylhexyl) phthalate at 21 pg to 200 ng/ml, but it was exponential at several p-nitrophenol concentrations. The rate of mineralization of 50 and 500 ng of aniline per ml and 200 pg and 2.0 ng of the phthalate per ml increased with time in lake waters. The phthalate and 2,4-dichlorophenoxyacetate were mineralized in samples from a eutrophic but not an oligotrophic lake. Addition to eutrophic lake water of a benzoate-utilizing bacterium did not increase the rate of benzoate mineralization at 34 and 350 pg/ml but did so at 5 and 50 ng/ml. Glucose and phenol reduced the percentage of p-nitrophenol mineralized at p-nitrophenol concentrations of 200 ng/ml but not at 22.6 pg/ml and inhibited the rates of mineralization at both concentrations. These results show that the kinetics of mineralization, the capacity of the aquatic community to assimilate carbon from the substrate or the extent of assimilation, and the sensitivity of the mineralizing populations to organic compounds are different at trace levels than at higher concentrations of organic compounds.  相似文献   

18.
The rates of mineralization of nitrilotriacetic acid (NTA), 2,4-dichlorophenoxyacetic acid (2,4-D), p-nitrophenol, aniline, and isopropyl N-phenylcarbamate (IPC) at one or more concentrations ranging from 100 pg/ml to 1.0 microgram/ml were proportional to chemical concentrations in samples of three lakes. The rates at 100 pg of NTA, 2,4-D, p-nitrophenol, and aniline per ml in samples of one or more lakes were less than predicted, assuming the rates were linearly related to the concentration. Neither NTA nor 2,4-dichlorophenol at 2.0 ng/ml was mineralized in some lake waters, but higher levels of the two chemicals were converted to CO2 in samples of the same waters. In samples from two lakes, little or no mineralization of IPC or 2,4-D occurred at 1.0 microgram/ml, but 10 ng/ml or lower levels of the herbicides were mineralized. The mineralization in sewage of 1.0 microgram of NTA per ml was biphasic; about 20% of the substrate was mineralized in 20 h, and mineralization was only reinitiated after a period of 130 h. The biphasic transformation was not a result of the accumulation of organic products, and it was still evident if protozoan activity was inhibited. NTA also underwent a biphasic mineralization in lake waters, and the biphasic pattern was not altered by additions of growth factors and inorganic nutrients. From 40 to 60% of the carbon of aniline added to lake water at levels of 100 pg/ml to 1.0 microgram/ml was mineralized, but more than 90% of the carbon of NTA, 2,4-D, or p-nitrophenol added to lake water at 10 ng/ml or 1.0 microgram/ml was mineralized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The rates of mineralization of nitrilotriacetic acid (NTA), 2,4-dichlorophenoxyacetic acid (2,4-D), p-nitrophenol, aniline, and isopropyl N-phenylcarbamate (IPC) at one or more concentrations ranging from 100 pg/ml to 1.0 microgram/ml were proportional to chemical concentrations in samples of three lakes. The rates at 100 pg of NTA, 2,4-D, p-nitrophenol, and aniline per ml in samples of one or more lakes were less than predicted, assuming the rates were linearly related to the concentration. Neither NTA nor 2,4-dichlorophenol at 2.0 ng/ml was mineralized in some lake waters, but higher levels of the two chemicals were converted to CO2 in samples of the same waters. In samples from two lakes, little or no mineralization of IPC or 2,4-D occurred at 1.0 microgram/ml, but 10 ng/ml or lower levels of the herbicides were mineralized. The mineralization in sewage of 1.0 microgram of NTA per ml was biphasic; about 20% of the substrate was mineralized in 20 h, and mineralization was only reinitiated after a period of 130 h. The biphasic transformation was not a result of the accumulation of organic products, and it was still evident if protozoan activity was inhibited. NTA also underwent a biphasic mineralization in lake waters, and the biphasic pattern was not altered by additions of growth factors and inorganic nutrients. From 40 to 60% of the carbon of aniline added to lake water at levels of 100 pg/ml to 1.0 microgram/ml was mineralized, but more than 90% of the carbon of NTA, 2,4-D, or p-nitrophenol added to lake water at 10 ng/ml or 1.0 microgram/ml was mineralized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Isopropyl N-phenylcarbamate (IPC) at 400 pg and 1 μg/ml was mineralized in samples of sewage, but only the lower concentration was mineralized in lake water samples in a 50-day period. IPC at 1 μg/ml disappeared from lake water, but it was converted to organic products. Mineralization of IPC at 400 pg/ml in lake water was enhanced by additions of inorganic nutrients or a mixture of nonchlorinated water pollutants but not by yeast extract or mixtures containing aromatic compounds or excretions of primary producers. The mineralization of 200 pg of 2,4-dichlorophenoxyacetate per ml of lake water was not affected by additions of low levels of yeast extract or compounds excreted by primary producers but was enhanced by low concentrations of mixtures of water pollutants. It is suggested that some chemicals that are found to be converted only to organic products, presumably by cometabolism, in tests using the concentrations commonly employed in laboratory evaluations may be mineralized at the lower concentrations prevailing in natural waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号