首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

An individual-based approach is used to describe population dynamics. Two kinds of models have been constructed with different distributions illustrating individual variability. In both models, the growth rate of an individual and its final body weight at the end of the growth period, which determines the number of offspring, are functions of the amount of resources assimilated by an individual. In the model with a symmetric distribution, the half saturation constant in the Michaelis–Menten function describing the relationship between the growth of individuals and the amount of resources has a normal distribution. In the model with an asymmetric distribution, resources are not equally partitioned among individuals. The individual who acquired more resources in the past, will acquire more resources in the future. A single population comprising identical individuals has a very short extinction time. If individuals differ in the amount of food assimilated, this time significantly increases irrespectively of the type of model describing population dynamics. Individuals of two populations of competing species use common resources. For larger differences in individual variability, the more variable species will have a longer extinction time and will exclude less variable species. Both populations can also coexist when their variabilities are equal or even when they are slightly different, in the latter case under the condition of high variability of both species. These conclusions have a deterministic nature in the case of the model with the asymmetric distribution—repeated simulations give the same results. In the case of the model with the symmetric distribution, these conclusions are of a statistical nature—if we repeat the simulation many times, then the more variable species will have a longer extinction time more frequently, but some results will happen (although less often) when the less variable species has a longer extinction time. Additionally, in the model with the asymmetric distribution, the result of competition will depend on the way of the introduction of variability into the model. If the higher variability is due to an increase in the proportion of individuals with a low assimilation of resources, it can produce a longer extinction time of the less variable species.

  相似文献   

2.
Most models of theoretical population ecology consider population density as a state variable and thus ignore the fact that populations are composed not of identical average individuals but of individuals which are usually different. However, this individual variability may be important for population regulation. We therefore analysed an individual-based population model which explicitly describes within-generation processes, i.e. individual growth, starvation, and resource dynamics. The results show that if population dynamics are dominated by slow changes in resource level, the population size in the model undergoes wide oscillation, often leading to extinction. If, on the other hand, fast within-generation processes predominate, such as starvation and sudden drops in resource levels, the population fluctuates to a limited extent around an average. Within-generation density dependence may thus be an important mechanism which is largely ignored in classic time-discrete state-variable models. We conclude that the individual-based approach provides important insights into the hierarchical organization of population dynamics, i.e. the relationship between fast processes at the individual level and slower processes at the population level.  相似文献   

3.
Sami Aikio  Susanna Pakkasmaa 《Oikos》2003,100(2):283-290
The members of natural populations often differ in size and relatedness to each other, which may affect the division of limited resources and have consequences on reproductive success and population dynamics. We modeled seasonal growth and dynamics in populations composed of different types of relatives (full-sibs, half-sibs and non-related individuals) under the continuum of competitive scenarios between complete symmetry and asymmetry. Growth was assumed logistic in proportion to individual biomass and the size-differences were weighted by the relatedness of individuals. The symmetric component of competition was experienced by all individuals in proportion to their biomass, whereas the asymmetric component was individual-specific, and influenced only by the individuals larger than the focal individual. Relatedness decreased and competitive asymmetry increased the variability of individual biomasses. Mortality of the smallest individuals and the size threshold of reproduction decreased population density. Population dynamics were stable when there was no size threshold for reproduction but the presence of the threshold led to cyclic dynamics under low competitive asymmetry. The effects of the threshold were greater among related than unrelated individuals. The results suggest that individual differences and the asymmetry of competition can greatly affect population dynamics. Full symmetry of competition may be evolutionarily unstable in populations of related individuals as it may increase the probability of extinction due to demographic stochasticity.  相似文献   

4.
Jouni Laakso  Veijo Kaitala  Esa Ranta 《Oikos》2004,104(1):142-148
Non-linearities are commonly observed in the responses of organisms to environment. They potentially modify the qualitative and quantitative properties of population dynamics. We studied how non-linear responses to environment, or "noise filters", influence population variability and extinction risk by introducing coloured noise to the growth rate in the Hassell single-species model. The consequences of noise filtering were analysed by comparing the model dynamics with linearly filtered and non-linearly filtered noise that have the same mean. Three biologically plausible filters we used: saturating, unimodal optimum type, and sigmoid responses.
Filtering can either decrease or increase population variability when compared to linear noise response. The effect of noise filtering on variability is most pronounced with stable population dynamics and the outcome depends on the filter type, population growth rate, and noise colour.
Non-linear noise filtering predominantly increases extinction risks when population growth rate is low (R<5). As an exception, saturating filter has a window of decreased risk at very low growth rate and reddened environment. In the unstable range of the dynamics (15These results suggest that accounting for the non-linear responses to environment should be considered when estimating extinction risks and population variability. Moreover, the non-linear responses make noise colour a more important factor in these analyses.  相似文献   

5.
Improving our capacity for predicting range shifts requires improved theory exploring the interplay between ecological and evolutionary processes and the (changing) environment. We introduce an individual‐based model incorporating simple stage structure and genetically determined resource allocation rules. Population dynamics are mediated by the resources available and the individual's genetics, and density dependence emerges solely as a consequence of resource levels decreasing as population density increases. Running the model for a set of stylised range‐expansion scenarios reveals the extent to which eco‐evolutionary processes can matter: spatial assortment of individuals possessing effective range expansion strategies (higher dispersal propensity, semelparity rather than iteroparity) can substantially accelerate range advance, and this is more important than the contribution of novel mutations arising during range expansion. In simulations of range expansion there is a greater risk of extinction when all individuals are given the mean strategy evolved in a stationary range. Additionally, our results demonstrate that the erosion of inter‐individual variability during a range‐shift can depress population abundance for lengthy periods, even after the climate has stabilised. Our theoretical results highlight the importance of accounting for inter‐individual variability in future predictive modelling of species' responses to environmental change.  相似文献   

6.
The route to extinction in variable environments   总被引:3,自引:0,他引:3  
Estimating the extinction risk of natural populations is not only an urgent problem in conservation biology but also involves some profound aspects of population dynamics. Apart from the obvious case of a continuous decrease in a population's carrying capacity, understanding the extinction process necessarily includes environmental and demographic stochasticity. Here, we build from first principles two stochastic, single-population models that can account for various routes to extinction via demographic and environmental variability. The Ricker model of population dynamics generates extinctions from either low or high (around or above carrying capacity) population densities, primarily depending on the growth parameter r . Since extinctions from high densities seem 'unnatural', there is either something wrong with the model or with our intuition. Suitable data are scarce. Environmental variability has its strongest influence on extinction risk via per capita birth rates and is only marginally influencing that risk via per capita death rates if the growth parameter is high. The distribution of the environmental noise and the stochastic structure of the model have quantitative, but not qualitative effects on the estimates of extinction risks. We conclude that to determine the route to extinction and to estimate the extinction risk require a careful choice of both the deterministic component of the population model (e.g., under- or over-compensation) and the structure of the demographic and environmental variabilities.  相似文献   

7.
The consequences of within-cohort (i.e., among-individual) variation for population dynamics are poorly understood, in particular for the case where life history is density dependent. We develop a physiologically structured population model that incorporates individual variation among and within cohorts and allows us to explore the intertwined relationship between individual life history and population dynamics. Our model is parameterized for the lizard Zootoca vivipara and reproduces well the species' dynamics and life history. We explore two common mechanisms that generate within-cohort variation: variability in food intake and variability in birth date. Predicted population dynamics are inherently very stable and do not qualitatively change when either of these sources of individual variation is introduced. However, increased within-cohort variation in food intake leads to changes in morphology, with longer but skinnier individuals, even though mean food intake does not change. Morphological changes result from a seemingly universal nonlinear relationship between growth and resource availability but may become apparent only in environments with strongly fluctuating resources. Overall, our results highlight the importance of using a mechanistic framework to gain insights into how different sources of intraspecific variability translate into life-history and population-dynamic changes.  相似文献   

8.
Kenneth A. Schmidt 《Oikos》2017,126(5):651-659
The combination of spatial structure and non‐linear population dynamics can promote the persistence of coupled populations, even when the average population growth rate of the patches seen in isolation would predict otherwise. This phenomenon has generally been conceptualized and investigated through the movement of individuals among patches that each holds many individuals, as in metapopulation models. However, population persistence can likewise increase as the result of individuals moving among sites (e.g. breeding territories) within in a single patch. Here I examine the latter: individuals making small‐scale informed decisions with respect to where to breed can promote population persistence in poor environments. Based on a simple algebraic model, I demonstrate information thresholds, and predict that greater information use is required for population persistence under lower spatial heterogeneity in habitat quality, all else equal. Second, I implement an individual‐based model to explore prior experience and prospecting on conspecific success within a more complex, and spatially heterogeneous environment. Uniquely, I jointly examine the effects of simulated habitat loss, spatial heterogeneity prior to habitat, and variation in information gathering on population persistence. I find that habitat loss accelerates population quasi‐extinction risk; however, information use reduces extinction probabilities in proportion to the level of information gathering. Per capita reproductive success declines with number of breeding sites, suggesting that information‐mediated Allee effects may contribute to extinction risk. In conclusion, my study suggests that populations in a changing world may be increasingly vulnerable to extinction where patch size and spatial heterogeneity constrain the effectiveness of information‐use strategies.  相似文献   

9.
Stochastic differential equations that model an SIS epidemic with multiple pathogen strains are derived from a system of ordinary differential equations. The stochastic model assumes there is demographic variability. The dynamics of the deterministic model are summarized. Then the dynamics of the stochastic model are compared to the deterministic model. In the deterministic model, there can be either disease extinction, competitive exclusion, where only one strain persists, or coexistence, where more than one strain persists. In the stochastic model, all strains are eventually eliminated because the disease-free state is an absorbing state. However, if the population size and the initial number of infected individuals are sufficiently large, it may take a long time until all strains are eliminated. Numerical simulations of the stochastic model show that coexistence cases predicted by the deterministic model are an unlikely occurrence in the stochastic model even for short time periods. In the stochastic model, either disease extinction or competitive exclusion occur. The initial number of infected individuals, the basic reproduction numbers, and other epidemiological parameters are important determinants of the dominant strain in the stochastic epidemic model.  相似文献   

10.
Quantifying the extinction vortex   总被引:4,自引:1,他引:3  
We developed a database of 10 wild vertebrate populations whose declines to extinction were monitored over at least 12 years. We quantitatively characterized the final declines of these well-monitored populations and tested key theoretical predictions about the process of extinction, obtaining two primary results. First, we found evidence of logarithmic scaling of time-to-extinction as a function of population size for each of the 10 populations. Second, two lines of evidence suggested that these extinction-bound populations collectively exhibited dynamics akin to those theoretically proposed to occur in extinction vortices. Specifically, retrospective analyses suggested that a population size of n individuals within a decade of extinction was somehow less valuable to persistence than the same population size was earlier. Likewise, both year-to-year rates of decline and year-to-year variability increased as the time-to-extinction decreased. Together, these results provide key empirical insights into extinction dynamics, an important topic that has received extensive theoretical attention.  相似文献   

11.
Structured models of metapopulation dynamics   总被引:2,自引:0,他引:2  
I develop models of metapopulation dynamics that describe changes in the numbers of individuals within patches. These models are analogous to structured population models, with patches playing the role of individuals. Single species models which do not include the effect of immigration on local population dynamics of occupied patches typically lead to a unique equilibrium. The models can be used to study the distributions of numbers of individuals among patches, showing that both metapopulations with local outbreaks and metapopulations without outbreaks can occur in systems with no underlying environmental variability. Distributions of local population sizes (in occupied patches) can vary independently of the total population size, so both patterns of distributions of local population sizes are compatible with either rare or common species. Models which include the effect of immigration on local population dynamics can lead to two positive equilibria, one stable and one unstable, the latter representing a threshold between regional extinction and persistence.  相似文献   

12.
Spatial coherence (synchrony) among subpopulations poses a danger to the metacommunity, as it increases the risk of regional extinction. When this effect is significant, the use of inference techniques based on the stochastic patch occupancy model (SPOM) may be inadequate, since SPOMs assume that each habitat patch is either occupied or empty, thereby neglecting the intra‐patch dynamics. Here we suggest a general classification of the dynamics that allows the identification, in a model‐independent manner, of the regimes where coherence effects are strong. We also present a new technique, based on patch occupancy (presence/absence) data, for identifying the role of spatial coherence in the stabilization of a metapopulation. If the chance of a local extinction grows with the connectivity, this implies that spatial synchronization is too strong and that regional‐scale extinction becomes possible. When this scenario occurs, a decrease in the movement of individuals (habitat fragmentation, reduced dispersal rates) has a positive effect on the sustainability of the spatially distributed population. The results of individual based simulations of a spatially structured population are analyzed with SPOM and the regime where the two‐state approximation fails is identified.  相似文献   

13.
马祖飞  李典谟 《生态学报》2003,23(12):2702-2710
影响种群绝灭的随机干扰可分为种群统计随机性、环境随机性和随机灾害三大类。在相对稳定的环境条件下和相对较短的时间内,以前两类随机干扰对种群绝灭的影响为生态学家关注的焦点。但是,由于自然种群动态及其影响因子的复杂特征,进一步深入研究随机干扰对种群绝灭的作用在理论上和实践上都必须发展新的技术手段。本文回顾了种群统计随机性与环境随机性的概念起源与发展,系统阐述了其分析方法。归纳了两类随机性在种群绝灭研究中的应用范围、作用方式和特点的异同和区别方法。各类随机作用与种群动态之间关系的理论研究与对种群绝灭机理的实践研究紧密相关。根据理论模型模拟和自然种群实际分析两方面的研究现状,作者提出了进一步深入研究随机作用与种群非线性动态方法的策略。指出了随机干扰影响种群绝灭过程的研究的方向:更多的研究将从单纯的定性分析随机干扰对种群动力学简单性质的作用,转向结合特定的种群非线性动态特征和各类随机力作用特点具体分析绝灭极端动态的成因,以期做出精确的预测。  相似文献   

14.
Many flowering plants rely on pollinators, self-fertilization, or both for reproduction. We model the consequences of these features for plant population dynamics and mating system evolution. Our mating systems-based population dynamics model includes an Allee effect. This often leads to an extinction threshold, defined as a density below which population densities decrease. Reliance on generalist pollinators who primarily visit higher density plant species increases the extinction threshold, whereas autonomous modes of selfing decrease and can eliminate the threshold. Generalist pollinators visiting higher density plant species coupled with autonomous selfing may introduce an effect where populations decreasing in density below the extinction threshold may nonetheless persist through selfing. The extinction threshold and selfing at low density result in populations where individuals adopting a single reproductive strategy exhibit mating systems that depend on population density. The ecological and evolutionary analyses provide a mechanism where prior selfing evolves even though inbreeding depression is greater than one-half. Simultaneous consideration of ecological and evolutionary dynamics confirms unusual features (e.g., evolution into extinction or abrupt increases in population density) implicit in our separate consideration of ecological and evolutionary scenarios. Our analysis has consequences for understanding pollen limitation, reproductive assurance, and the evolution of mating systems.  相似文献   

15.
16.
The evolution of cooperation is possible with a simple model of a population of agents that can move between groups. The agents play public good games within their group. The relative fitness of individuals within the whole population affects their number of offspring. Groups of cooperators evolve but over time are invaded by defectors which eventually results in the group's extinction. However, for small levels of migration and mutation, high levels of cooperation evolve at the population level. Thus, evolution of cooperation based on individual fitness without kin selection, indirect or direct reciprocity is possible. We provide an analysis of the parameters that affect cooperation, and describe the dynamics and distribution of population sizes over time.  相似文献   

17.
We have developed a stochastic model to explore the common effect which genetics and demography have on the extinction risk of endangered populations. The dynamics is formulated as a MARKOVian birth and death process (in continuous time), whereby selection acts through different mortalities of each genotype. With the help of this model we are able to show how inbreeding and outbreeding can influence the genetic variability and the survival of a population. Whether inbreeding or outbreeding takes place depends on the specific mating system. In our model we consider positive assortative as well as disassortative mating. In the case of additive fitness we show that inbreeding reduces the extinction risk and the genetic variability.  相似文献   

18.
  1. Mutual reinforcement between abiotic and biotic factors can drive small populations into a catastrophic downward spiral to extinction—a process known as the “extinction vortex.” However, empirical studies investigating extinction dynamics in relation to species'' traits have been lacking.
  2. We assembled a database of 35 vertebrate populations monitored to extirpation over a period of at least ten years, represented by 32 different species, including 25 birds, five mammals, and two reptiles. We supplemented these population time series with species‐specific mean adult body size to investigate whether this key intrinsic trait affects the dynamics of populations declining toward extinction.
  3. We performed three analyses to quantify the effects of adult body size on three characteristics of population dynamics: time to extinction, population growth rate, and residual variability in population growth rate.
  4. Our results provide support for the existence of extinction vortex dynamics in extirpated populations. We show that populations typically decline nonlinearly to extinction, while both the rate of population decline and variability in population growth rate increase as extinction is approached. Our results also suggest that smaller‐bodied species are particularly prone to the extinction vortex, with larger increases in rates of population decline and population growth rate variability when compared to larger‐bodied species.
  5. Our results reaffirm and extend our understanding of extinction dynamics in real‐life extirpated populations. In particular, we suggest that smaller‐bodied species may be at greater risk of rapid collapse to extinction than larger‐bodied species, and thus, management of smaller‐bodied species should focus on maintaining higher population abundances as a priority.
  相似文献   

19.
Both predation and individual variation in life history traits influence population dynamics. Recent results from laboratory predator–prey systems suggest that differences between individuals can also influence predator–prey dynamics when different genotypes experience different predation-associated mortalities. Despite the growing number of studies in this field, there is no synthesis identifying the overall importance of the interactions between predation and individual heterogeneity and their role in shaping the dynamics of free-ranging populations of vertebrates. We aim to fill this gap with a review that examines how individual variability in prey susceptibility, in predation costs, in predator selectivity, and in predatory performance, might influence prey population dynamics. Based on this review, it is clear that (1) predation risk and costs experienced by free-ranging prey are associated with their phenotypic attributes, (2) many generalist predator populations consist of individual specialists with part of the specialization associated with their phenotypes, and (3) a complete understanding of the population dynamic consequences of predation may require information on individual variability in prey selection and prey vulnerability. Altogether, this work (1) highlights the importance of maintaining long-term, detailed studies of individuals of both predators and prey in contrasting ecological conditions, and (2) advocates for a better use of available information to account for interactive effects between predators and their prey when modelling prey population dynamics.  相似文献   

20.
Disentangling the processes leading populations to extinction is a major topic in ecology and conservation biology. The difficulty to find a mate in many species is one of these processes. Here, we investigate the impact of self-incompatibility in flowering plants, where several inter-compatible classes of individuals exist but individuals of the same class cannot mate. We model pollen limitation through different relationships between mate availability and fertilization success. After deriving a general stochastic model, we focus on the simple case of distylous plant species where only two classes of individuals exist. We first study the dynamics of such a species in a large population limit and then, we look for an approximation of the extinction probability in small populations. This leads us to consider inhomogeneous random walks on the positive quadrant. We compare the dynamics of distylous species to self-fertile species with and without inbreeding depression, to obtain the conditions under which self-incompatible species can be less sensitive to extinction while they can suffer more pollen limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号