首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hallmark event in neurodegenerative diseases is the accumulation of misfolded aggregated proteins in the brain leading to neuronal dysfunction and disease. Compelling evidence suggests that misfolded proteins damage cells by inducing endoplasmic reticulum (ER) stress and alterations in calcium homeostasis. Changes in cytoplasmic calcium concentration lead to unbalances on several signaling pathways. Recent data suggest that calcium-mediated hyperactivation of calcineurin (CaN), a key phosphatase in the brain, triggers synaptic dysfunction and neuronal death, the two central events responsible for brain degeneration in neurodegenerative diseases. Therefore, blocking CaN hyper-activation might be a promising therapeutic strategy to prevent brain damage in neurodegenerative diseases.  相似文献   

2.
Synaptic function crucially relies on the constant supply and removal of neuronal membranes. The morphological complexity of neurons poses a significant challenge for neuronal protein transport since the machineries for protein synthesis and degradation are mainly localized in the cell soma. In response to this unique challenge, local micro‐secretory systems have evolved that are adapted to the requirements of neuronal membrane protein proteostasis. However, our knowledge of how neuronal proteins are synthesized, trafficked to membranes, and eventually replaced and degraded remains scarce. Here, we review recent insights into membrane trafficking at synaptic sites and into the contribution of local organelles and micro‐secretory pathways to synaptic function. We describe the role of endoplasmic reticulum specializations in neurons, Golgi‐related organelles, and protein complexes like retromer in the synthesis and trafficking of synaptic transmembrane proteins. We discuss the contribution of autophagy and of proteasome‐mediated and endo‐lysosomal degradation to presynaptic proteostasis and synaptic function, as well as nondegradative roles of autophagosomes and lysosomes in signaling and synapse remodeling. We conclude that the complexity of neuronal cyto‐architecture necessitates long‐distance protein transport that combines degradation with signaling functions.  相似文献   

3.
Abstract

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that functions to restore the energy balance by phosphorylating its substrates during altered metabolic conditions. AMPK activity is tightly controlled by diverse regulators including its upstream kinases LKB1 and CaMKK2. Recent studies have also identified the localization of AMPK at different intracellular compartments as another key mechanism for regulating AMPK signaling in response to specific stimuli. This review discusses the AMPK signaling associated with different subcellular compartments, including lysosomes, endoplasmic reticulum, mitochondria, Golgi apparatus, nucleus, and cell junctions. Because altered AMPK signaling is associated with various pathologic conditions including cancer, targeting AMPK signaling in different subcellular compartments may present attractive therapeutic approaches for treatment of disease.  相似文献   

4.
Structural reorganization of smooth endoplasmic reticulum (SER) in relation to changes in functional state of neurons has been investigated using fatigue and subsequent rhabilitation of the goldfish Mauthner (M-) cells as experimental approach. The recovery of original structure of SER in distal parts of dendrities after its significant proliferation, caused by a 3 h natural stimulation, markedly retarded, as compared with quickly normalized functional activity of M-cells. At the same time in somata and proximal parts of dendrites the structural recovery of SER coincided with restoration of the initial function of M-cells. The results suggest that within a single neuron SER with its obvious structural plastisity the neuron functional activoty is supported and restored through regulating the extent of proliferation angmenting Ca(2+)-accumulation in its compartments. Nevertheless SER posseses certain autonomy in structural recovery within somata and dendrites. Such differences of SER plasticity in different parts of the same neuron presumable reflect differences in interaction of its individual compartments with the cytoskeleton and adjacent cytoplasm, or may be caused by different activity of synapses situated on the soma and dendrites.  相似文献   

5.
The redox homeostasis of the endoplasmic reticulum lumen is characteristically different from that of the other subcellular compartments. The concerted action of membrane transport processes and oxidoreductase enzymes maintain the oxidized state of the thiol-disulfide and the reducing state of the pyridine nucleotide redox systems, which are prerequisites for the normal functions of the organelle. The powerful thiol-oxidizing machinery allows oxidative protein folding but continuously challenges the local antioxidant defense. Alterations of the cellular redox environment either in oxidizing or reducing direction affect protein processing and may induce endoplasmic reticulum stress and unfolded protein response. The activated signaling pathways attempt to restore the balance between protein loading and processing and induce apoptosis if the attempt fails. Recent findings strongly support the involvement of this mechanism in brain ischemia, neuronal degenerative diseases and traumatic injury. The redox changes in the endoplasmic reticulum are integral parts of the pathomechanism of neurological diseases, either as causative agents, or as complications.  相似文献   

6.
Shen R  Shuai JW 《生理学报》2011,63(5):442-452
细胞溶质内的游离钙离子在许多细胞活动中发挥着重要的作用.对于神经元,细胞膜上的神经电信号和胞内钙离子化学信号之间有着复杂的相互作用,每个神经元都可看作为一个含有细胞膜和内质网膜的双膜系统,而神经细胞的内质网则可视为神经元内的神经元.本综述探讨了神经元膜上神经电信号与内质网钙通道释放的胞内钙信号相耦合的动力学模型.我们认...  相似文献   

7.
Neurons are highly polarized cells whose dendrites and axons extend long distances from the cell body to form synapses that mediate neuronal communication. The trafficking of membrane lipids and proteins throughout the neuron is essential for the establishment and maintenance of cell morphology and synaptic function. However, the dynamic shape and spatial organization of secretory organelles, and their role in defining neuronal polarity and the composition of synapses, are not well delineated. In particular, the structure and function of the continuous and intricate network of the endoplasmic reticulum (ER) in neurons remain largely unknown. Here we review our current understanding of the ER in dendrites and axons, its contribution to local trafficking of neurotransmitter receptors, and the implications for synaptic plasticity and pathology.  相似文献   

8.
Neurologic disease caused by human immunodeficiency virus type 1 (HIV-1) is ultimately refractory to highly active antiretroviral therapy (HAART) because of failure of complete virus eradication in the central nervous system (CNS), and disruption of normal neural signaling events by virally induced chronic neuroinflammation. We have previously reported that HIV-1 Tat can induce mitochondrial hyperpolarization in cortical neurons, thus compromising the ability of the neuron to buffer calcium and sustain energy production for normal synaptic communication. In this report, we demonstrate that Tat induces rapid loss of ER calcium mediated by the ryanodine receptor (RyR), followed by the unfolded protein response (UPR) and pathologic dilatation of the ER in cortical neurons in vitro. RyR antagonism attenuated both Tat-mediated mitochondrial hyperpolarization and UPR induction. Delivery of Tat to murine CNS in vivo also leads to long-lasting pathologic ER dilatation and mitochondrial morphologic abnormalities. Finally, we performed ultrastructural studies that demonstrated mitochondria with abnormal morphology and dilated endoplasmic reticulum (ER) in brain tissue of patients with HIV-1 inflammation and neurodegeneration. Collectively, these data suggest that abnormal RyR signaling mediates the neuronal UPR with failure of mitochondrial energy metabolism, and is a critical locus for the neuropathogenesis of HIV-1 in the CNS.  相似文献   

9.
Because of its highly branched dendrite, the Purkinje neuron requires significant computational resources if coupled electrical and biochemical activity are to be simulated. To address this challenge, we developed a scheme for reducing the geometric complexity; while preserving the essential features of activity in both the soma and a remote dendritic spine. We merged our previously published biochemical model of calcium dynamics and lipid signaling in the Purkinje neuron, developed in the Virtual Cell modeling and simulation environment, with an electrophysiological model based on a Purkinje neuron model available in NEURON. A novel reduction method was applied to the Purkinje neuron geometry to obtain a model with fewer compartments that is tractable in Virtual Cell. Most of the dendritic tree was subject to reduction, but we retained the neuron’s explicit electrical and geometric features along a specified path from spine to soma. Further, unlike previous simplification methods, the dendrites that branch off along the preserved explicit path are retained as reduced branches. We conserved axial resistivity and adjusted passive properties and active channel conductances for the reduction in surface area, and cytosolic calcium for the reduction in volume. Rallpacks are used to validate the reduction algorithm and show that it can be generalized to other complex neuronal geometries. For the Purkinje cell, we found that current injections at the soma were able to produce similar trains of action potentials and membrane potential propagation in the full and reduced models in NEURON; the reduced model produces identical spiking patterns in NEURON and Virtual Cell. Importantly, our reduced model can simulate communication between the soma and a distal spine; an alpha function applied at the spine to represent synaptic stimulation gave similar results in the full and reduced models for potential changes associated with both the spine and the soma. Finally, we combined phosphoinositol signaling and electrophysiology in the reduced model in Virtual Cell. Thus, a strategy has been developed to combine electrophysiology and biochemistry as a step toward merging neuronal and systems biology modeling.  相似文献   

10.
Loading cells with the calcium chelator BAPTA-AM is an analytical tool which has been used to suppress a rise in cytoplasmic calcium activity under various experimental conditions and thus, to evaluate the role of elevated cytoplasmic calcium levels in the process under investigation. BAPTA-AM may, however, not only have an isolated effect on cytoplasmic processes but also on functions of other subcellular compartments such as the endoplasmic reticulum (ER). Under conditions associated with ER dysfunction, the unfolded protein response is activated which is characterized by suppression of translation and processing of xbp1 mRNA, resulting in activation of the expression of genes coding for ER stress proteins. To investigate whether BAPTA-AM causes ER stress, primary neuronal cell cultures were loaded with varying amounts of BAPTA-AM. Exposure of cells to BAPTA-AM induced a marked rise in processed xbp1 mRNA levels, correlating with exposure times and BAPTA-AM concentrations in the medium used for loading. The increase in processed xbp1 mRNA was associated with suppression of protein synthesis and induction of cell injury. The results of this study indicate that loading primary neuronal cell cultures with BAPTA-AM activates xbp1 processing, implying that this calcium chelator does not have an isolated effect on cytoplasmic calcium activity but also an affect on ER function.  相似文献   

11.
Neuronal calcium stores   总被引:4,自引:0,他引:4  
Neuronal calcium stores associated with specialized intracellular organelles, such as endoplasmic reticulum and mitochondria, dynamically participate in generation of cytoplasmic calcium signals which accompany neuronal activity. They fulfil a dual role in neuronal Ca2+ homeostasis being involved in both buffering the excess of Ca2+ entering the cytoplasm through plasmalemmal channels and providing an intracellular source for Ca2+. Increase of Ca2+ content within the stores regulates the availability and magnitude of intracellular calcium release, thereby providing a mechanism which couples the neuronal activity with functional state of intracellular Ca2+ stores. Apart of 'classical' calcium stores (endoplasmic reticulum and mitochondria) other organelles (e.g. nuclear envelope and neurotransmitter vesicles) may potentially act as a functional Ca2+ storage compartments. Calcium ions released from internal stores participate in many neuronal functions, and might be primarily involved in regulation of various aspects of neuronal plasticity.  相似文献   

12.
A Human neutrophils are an essential component of the innate immune response. Although significant progress has been made toward understanding mechanisms of phagocytosis and microbicidal activity, a comprehensive analysis of proteins comprising neutrophil phagosomes has not been conducted. To that end, we used subcellular proteomics to identify proteins associated with human neutrophil phagosomes following receptor-mediated phagocytosis. Proteins (n = 411 spots) resolved from neutrophil phagosome fractions were identified by MALDI-TOF MS and/or LC-MS/MS analysis. Those associated with phagocytic vacuoles originated from multiple subcellular compartments, including the cytosol, plasma membrane, specific and azurophilic granules, and cytoskeleton. Unexpectedly several enzymes typically associated with mitochondria were identified in phagosome fractions. Furthermore proteins characteristic of the endoplasmic reticulum, including 11 molecular chaperones, were resolved from phagosome preparations. Confocal microscopy confirmed that proteins representing these major subcellular compartments were enriched on phagosomes of intact neutrophils. Notably calnexin and glucose-regulated protein 78 co-localized with gp91(phox) in human neutrophils and were thus likely delivered to phagosomes by fusion of specific granules. We conclude that neutrophil phagosomes have heretofore unrecognized complexity and function, which includes potential for antigen processing events.  相似文献   

13.
In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer's disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

14.
In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer's disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

15.
Neurons strictly regulate expression of a wide variety of voltage-dependent ion channels in their surface membranes to achieve precise yet dynamic control of intrinsic membrane excitability. Neurons also exhibit extreme morphological complexity that underlies diverse aspects of their function. Most ion channels are preferentially targeted to either the axonal or somatodendritic compartments, where they become further localized to discrete membrane subdomains. This restricted accumulation of ion channels enables local control of membrane signaling events in specific microdomains of a given compartment. Voltage-dependent K+ (Kv) channels act as potent modulators of diverse excitatory events such as action potentials, excitatory synaptic potentials, and Ca2+ influx. Kv channels exhibit diverse patterns of cellular expression, and distinct subtype-specific localization, in mammalian central neurons. Here we review the mechanisms regulating the abundance and distribution of Kv channels in mammalian neurons and discuss how dynamic regulation of these events impacts neuronal signaling.  相似文献   

16.
A fundamental question in understanding neuronal computations is how dendritic events influence the output of the neuron. Different forms of integration of neighbouring and distributed synaptic inputs, isolated dendritic spikes and local regulation of synaptic efficacy suggest that individual dendritic branches may function as independent computational subunits. In the present paper, we study how these local computations influence the output of the neuron. Using a simple cascade model, we demonstrate that triggering somatic firing by a relatively small dendritic branch requires the amplification of local events by dendritic spiking and synaptic plasticity. The moderately branching dendritic tree of granule cells seems optimal for this computation since larger dendritic trees favor local plasticity by isolating dendritic compartments, while reliable detection of individual dendritic spikes in the soma requires a low branch number. Finally, we demonstrate that these parallel dendritic computations could contribute to the generation of multiple independent place fields of hippocampal granule cells.  相似文献   

17.
18.
Abstract— A comprehensive study has been undertaken on the subcellular and subsynaptosomal distribution of a number of markers for subcellular organelles in preparations from rat brain. Although the activity of most enzymatic markers was decreased by freezing and storage at - 70oC, no significant changes were noted in the distribution of these activities. This demonstrates that contamination of brain fractions by subcellular organelles can be accurately assessed after freezing and thawing. A marked discrepancy was noted between the distribution of three putative markers for endoplasmic reticulum. CDP-choline-diacylglycerol cholinephosphotransferase (EC 2.7.8.1) activity was mainly limited to the microsomal fraction and was present to a lesser extent in the synaptosomal fraction than the other putative markers for endoplasmic reticulum. Estrone sulfate sulfohydrolase (EC 3.1.6.2) activity demonstrated a bimodal distribution between the crude nuclear and microsomal fractions. However, considerable activity was associated with the synaptosomal fraction. NADPH-cytochrome c reductase (EC 2.3.1.15) activity sedimented in the microsomal and the synaptosomal fractions. Calculations based on the relative specific activities of the microsomal and synaptic plasma membrane fraction indicated that the contamination of the synaptic plasma membranes by endoplasmic reticulum was 44.5% (NADPH-cytochrome c reductase), 38.0% (estrone sulfatase) and 9.0% (cholinephosphotransferase). Since it is believed that virtually all of the synthesis of phosphatidylcholine by cholinephosphotransferase occurs in the neuronal and glial cell bodies, it was concluded that cholinephosphotransferase is a satisfactory marker for the endoplasmic reticulum derived from these sources. The results suggest that NADPH-cytochrome c reductase and estrone sulfatase may be present in the smooth endoplasmic reticulum system responsible for the fast transport of macromolecules along the axon to the nerve endings as well as in the endoplasmic reticulum of the cell bodies. The possible relation between that portion of the smooth endoplasmic reticulum involved in fast axonal transport and the GERL (Golgi, Endoplasmic Reticulum, Lysosomes) complex discovered by Novikoff and his coworkers (Novikoff , 1976) is discussed.  相似文献   

19.
Endoplasmic reticulum calcium homeostasis is involved in a multitude of signaling, as well as "house-keeping" functions that control cell growth, differentiation or apoptosis in every human/eukaryotic cell. Calcium is actively accumulated in the endoplasmic reticulum by Sarco/Endoplasmic Reticulum Calcium transport ATPases (SERCA enzymes). SERCA-dependent calcium transport is the only calcium uptake mechanism in this organelle, and therefore the regulation of SERCA function by the cell constitutes a key mechanism to adjust calcium homeostasis in the endoplasmic reticulum depending on the cell type and its state of differentiation. The direct pharmacological modulation of SERCA activity affects cell differentiation and survival. SERCA expression levels can undergo significant changes during cell differentiation or tumorigenesis, leading to modified endoplasmic reticulum calcium storage. In several cell types such as cells of hematopoietic origin or various epithelial cells, two SERCA genes (SERCA2 and SERCA3) are simultaneously expressed. Expression levels of SERCA3, a lower calcium affinity calcium pump are highly variable. In several cell systems SERCA3 expression is selectively induced during differentiation, whereas during tumorigenesis and blastic transformation SERCA3 expression is decreased. These observations point at the existence of a cross-talk, via the regulation of SERCA3 levels, between endoplasmic reticulum calcium homeostasis and the control of cell differentiation, and show that endoplasmic reticulum calcium homeostasis itself can undergo remodeling during differentiation. The investigation of the anomalies of endoplasmic reticulum differentiation in tumor and leukemia cells may be useful for a better understanding of the contribution of calcium signaling to the establishment of malignant phenotypes.  相似文献   

20.
Astrocytes can sense local synaptic release of glutamate by metabotropic glutamate receptors. Receptor activation in turn can mediate transient increases of astrocytic intracellular calcium concentration through inositol 1,4,5-trisphosphate production. Notably, the perturbation of calcium concentration can propagate to other adjacent astrocytes. Astrocytic calcium signaling can therefore be linked to synaptic information transfer between neurons. On the other hand, astrocytes can also modulate neuronal activity by feeding back onto synaptic terminals in a fashion that depends on their intracellular calcium concentration. Thus, astrocytes can also be active partners in neuronal network activity. The aim of our study is to provide a computationally simple network model of mutual neuron–astrocyte interactions, in order to investigate the possible roles of astrocytes in neuronal network dynamics. In particular, we focus on the information entropy of neuronal firing of the whole network, considering how it could be affected by neuron–glial interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号