首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Summary This study was designed to assess the changes in fiber-type distribution of the extensor digitorum longus (EDL) muscle of the mouse during the first 21 days of age following neonatal sciatic neurectomy. Denervated and normal muscles were compared at 7, 14, and 21 days of age and the normal EDL was also studied at 1 day of age. Frozen sections of the EDL were treated histochemically to detect NADH-tetrazolium reductase and myosin ATPase reactions. Quantitative assessment included measurements of cross-sectional areas and fiber counting. Denervation resulted in muscle atrophy which was due primarily to a decrease in individual fiber area as opposed to fiber loss. Histochemical maturation of the EDL was severely affected by neonatal denervation during the first three postnatal weeks. By 21 days, two extrafusal fiber types which were both oxidative could be distinguished. One type was highly atrophied and resembled an immature fiber exhibiting myosin ATPase staining at both acid and alkaline preincubation conditions, whereas another type was less atrophied and showed myosin ATPase staining resembling fast-twitch (type HA) fibers. These findings emphasize the importance of an intact nerve supply in determining the phenotypic expression of skeletal muscle, and point to the early postnatal period as a critical stage in fiber type differentiation.  相似文献   

2.
Muscle spindles from the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscles of genetically dystrophic mice of the dy2J/dy2J strain were compared with age-matched normal animals at neonatal ages of 1-3 weeks according to histochemical, quantitative, and ultrastructural parameters. Intrafusal fibers in both the soleus and EDL exhibited similar regional differences in myosin ATPase activity, and conformed to those noted previously in various adult species. In distal polar regions, all nuclear bag fibers resembled extrafusal fibers of the type 1 variety, whereas in capsular zones they could be divided into two subtypes. Nuclear chain fibers possessed a staining pattern similar to type 2 extrafusal fibers, and in contrast to the bag fibers they exhibited no regional variations. These features were consistently observed in both the normal and dystrophic muscles at all ages. Spindles varied only slightly in their number and distribution in the two types of muscle, and their location followed the neurovascular branching pattern in each. Irrespective of age or genotype, spindles in the soleus were more homogeneously dispersed, but those in the EDL were concentrated along the dorsal aspect of the muscle. No significant differences were noted in the total number of spindles between normal and dystrophic muscles. In addition, no dramatic differences were observed in the muscle spindle index for soleus and EDL. The first obvious disease-related changes were noted in extrafusal fibers of the soleus of 3-week-old mice, and spindles were often located close to these areas of fiber degeneration. Despite alterations in the surrounding tissue, however, spindles appeared morphologically unaltered in dystrophy. These observations indicate that intrafusal fibers of spindles in neonatal mice appear enzymatically and histologically unaffected in incipient stages of progressive muscular dystrophy.  相似文献   

3.
The ontogeny of a primary flight muscle, the pectoralis, in the little brown bat (Myotis lucifugus: Vespertilionidae) was studied using histochemical, immunocytochemical, and electrophoretic techniques. In fetal and early neonatal (postnatal age 1–6 days) Myotis, histochemical techniques for myofibrillar ATPase (mATPase) and antibodies for slow and fast myosins demonstrated the presence of two fiber types, here called types I and IIa. These data correlated with multiple transitional myosin heavy chain isoforms and native myosin isoforms demonstrated with SDS-PAGE and 4% pyrophosphate PAGE. There was a decrease in the distribution and number of type I fibers with increasing postnatal age. At postnatal age 8–9 days, the adult phenotype was observed with regard to muscle fiber type (100% type IIa fibers) and myosin isoform profile (single adult MHC and native myosin isoforms). This “adult” fiber type profile and myosin isoform composition preceeded adult function by about 2 weeks. For example, little brown bats were incapable of sustained flight until approximately postnatal day 24, and myofiber size did not achieve adult size until approximately postnatal day 25. Although Myotis pectoralis is unique in being composed of 100% type IIa fibers, transitional fiber types and isoforms were present. These transitional forms had been observed previously in other mammals bearing mixed adult muscle fibers and which undergo transitional stages in muscle ontogeny. However, in Myotis pectoralis, this transition transpires relatively early in development. © 1994 Wiley-Liss, Inc.  相似文献   

4.
With the use of myosin adenosinetriphosphatase (ATPase) and immunofluorescence staining methods, the adaptive responses of intrafusal and extrafusal fibers to endurance swimming were studied in frozen sections of rat soleus (SOL) and extensor digitorum longus (EDL) muscles. Glycogen depletion confirmed muscle fatigue at the end of a standardized bout of exercise. No significant age-dependent changes in myosin isoforms were detected in any fibers. The 12-wk training increased type I fibers by 10.9% in the SOL and type IIa fibers in the EDL by 16.6%. In trained muscle sections, both staining methods identified a permuted chain fiber, expressed the same as the myosin isoform in the bag2 fiber. However, no exercise-induced change of myosin isoform profile was found in the bag1 and bag2 fibers. Myosin ATPase (and immunofluorescence) staining showed the percentage of permuted chain fibers increased from 0 to 6.7% (5.6%) after 6 wk of training and to 19.2% (14.1%) after 12 wk of training and that it was still at 6.1% (4.2%) 10 wks after training. A novel myosin isoform may thus be expressed in nuclear chain fibers by repetitive recruitment of muscle spindles.  相似文献   

5.
Abstract. Myosin isozymes from the slow soleus and fast EDL muscles of the rat hindlimb were analyzed by pyrophosphate gel electrophoresis, by peptide mapping of heavy chains, and by antibody staining. At the earliest stage examined, 20 days gestation, distinctions between the developing fast and slow muscles were seen by all these criteria; all fibers in the distal hindlimb reacted strongly with antibody to adult fast myosin. Some fibers also reacted with antibody to adult slow myosin; these fibers had a precise, axial distribution in the hindlimb. This pattern of staining which includes the entire soleus, foreshadows the adult distribution of slow fibers and may indicate that the specific pattern of innervation of the limb is already determined. In the early developing soleus there are four fetal and neonatal isozymes plus two isozymes present in equal proportions in the 'slow' area of the pyrophosphate gel. The mobility of these two slow isozymes decreases with maturity and the slowest moving isozyme gradually becomes the dominant species. Thus early diversity between the soleus and EDL is expressed by myosins which are distinct from the mature isozymes. The relative proportion of slow isozymes significantly increases with development and as this occurs the fetal and neonatal isozymes are progressively eliminated. Transiently at least one mature fast isozyme appears in the soleus. This is present at 15 days postpartum and probably correlates with the population of fast, type II fibers, which comprise 50% of this muscle cell population at 15 days. The EDL contained three fetal and neonatal isozymes and only one slow isozyme which does not change in mobility with age. Slow isozymes in the soleus and EDL are thus not identical. Each muscle underwent a unique series of changes until the adult pattern of isozymes and heavy chains was reached about one month postpartum.  相似文献   

6.
The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in control rats. Immunohistochemical changes in the MG were minimal. These data suggest that the magnitude and direction of enzymatic activity and cell volume changes are dependent on the muscle, the region of the muscle, and the type of myosin expressed in the fibers. Further, the ability of fibers to maintain normal or even elevated activities per unit volume of some metabolic enzymes is remarkable considering the marked and rapid decrease in fiber volume.  相似文献   

7.
1. A sample of fibers from deep (close to the bone) and superficial (away from the bone) regions of the plantaris (PLT) and medial (MG) and lateral (LG) gastrocnemius muscles of a neonatal, a 17-day-old and an adult giraffe were typed qualitatively as dark or light based on alkaline preincubation myosin ATPase staining properties and then sized. 2. Each muscle at all ages showed a higher percentage and a larger cross-sectional area (CSA) or light ATPase fibers in the deep than the superficial region. This relationship was qualitatively, although not quantitatively, similar to that reported in hindlimb muscles of other mammals. 3. At all ages, the PLT, the deepest muscle in the synergistic group, had the highest relative total CSA of light ATPase fibers among the muscles sampled. 4. At birth, the PLT had an unusually high percentage of light ATPase fibers in comparison to that found in the same muscle of other mammals. With age, the total CSA of light ATPase fibers increased dramatically in the PLT and decreased slightly in the MG and LG. 5. These data suggest that the PLT, especially the deep portion, may functionally replace the soleus muscle which is absent in the giraffe. In addition, the fiber type results demonstrate that the changes in the fiber type composition of individual muscles observed at different postnatal ages in the giraffe are relatively similar to that reported in smaller mammals, suggesting the existence of similar regulatory mechanisms.  相似文献   

8.
Limitations in the ability of the human visual system to assess accurately the relative staining densities of individual fibers in muscle tissue stained for myosin. ATPase can complicate the objective evaluation of fiber type populations. In this study a novel approach is employed which utilizes human visual capabilities to provide accurate fiber classification. Using this approach, the ability of five ATPase staining techniques to discriminate fiber type categories in single samples of human normal and Duchenne dystrophic skeletal muscle is evaluated, as is the consistency of the fiber type classifications between stains. While no major discrepancies in fiber typing were observed in the sample of normal muscle, significant differences in classification, along with a decrease in the ability to discriminate fiber types were noted in the sample of Duchenne muscular dystrophy. For the most part, these discrepancies were resolved by a re-interpretation of the staining characteristics of fibers in one stain.  相似文献   

9.
The histochemical ATPase activity and the myosin light chains of a rat fast muscle (extensor digitorum longus, EDL) and a rat slow muscle (soleus) during development have been investigated. Both muscles initially synthesize fast myosin light chains and show the intense histochemical ATPase activity characteristic of adult fast muscle fibers. After birth, the soleus begins to accumulate slow fibers with their characteristic low histochemical ATPase activity, and slow myosin light chains begin to appear. Sciatic neurectomy prevents the development of slow fibers and the synthesis of slow myosin light chains in the soleus, while the EDL is unaffected. Similarly, cordotomy of an adult rat results, in the soleus, in the appearance of fibers with more intense staining for ATPase and an increase in fast myosin light chains. The EDL is unchanged by cordotomy. As a result, we suggest that slow muscle development, but not fast muscle development, is dependent upon the functional activity of the nervous system.  相似文献   

10.
Summary The histochemical pattern of muscle fiber types of the longissimus dorsi and biceps femoris muscles was investigated in normal and splaylegged piglets at birth and seven days later. Only slight differences between the muscle fibers at birth were found using histochemical reactions for alkaline adenosine triphosphatase (ATPase), succinate dehydrogenase (SDH), phosphorylase (PH) activities, and for the periodic acid-Schiff (PAS) reaction. With the method for acid-preincubated ATPase activity, high activity was observed in Type I muscle fibers and low activity in Type II muscle fibers in animals of both groups investigated. However, a higher number of Type I fibers was found in muscles of normal piglets, suggesting a faster and more advanced process of transformation of Type II into Type I muscle fibers in unaffected animals. Thus the histochemical conversion appears to be retarded in muscles of splaylegged animals, which have a histochemical pattern similar to that of normal prenatal animals. Cholinesterase activity in motor endplates was well developed; its staining revealed smaller sized and irregularly arranged endplates in muscles of affected piglets. Fiber type differentiation in muscles of animals which recovered from splayleg becomes fully developed and comparable to normal piglets seven days after birth. The number of fibers which became converted from Type II to Type I was increased; the fiber types were differentiated with regard to the PAS reaction and to their ATPase, SDH and PH activities. Morphological features of motor endplates in muscles of normal and surviving splaylegged piglets are similar.Histochemical investigation of the fiber type differentiation thus suggests that full recovery occurs within the first week of postnatal life in muscles affected by pathological changes accompanying splayleg.  相似文献   

11.
The histochemical pattern of muscle fiber types of the longissimus dorsi and biceps femoris muscles was investigated in normal and splaylegged piglets at birth and seven days later. Only slight differences between the muscle fibers at birth were found using histochemical reactions for alkaline adenosine triphosphatase (ATPase), succinate dehydrogenase (SDH), phosphorylase (PH) activities, and for the periodic acid-Schiff (PAS) reaction. With the method for acid-preincubated ATPase activity, high activity was observed in Type I muscle fibers and low activity in Type II muscle fibers in animals of both groups investigated. However, a higher number of Type I fibers was found in muscles of normal piglets, suggesting a faster and more advanced process of transformation of Type II into Type I muscle fibers in unaffected animals. Thus the histochemical conversion appears to be retarded in muscles of splaylegged animals, which have a histochemical pattern similar to that of normal prenatal animals. Cholinesterase activity in motor endplates was well developed; its staining revealed smaller sized and irregularly arranged endplates in muscles of affected piglets. Fiber type differentiation in muscles of animals which recovered from splayleg becomes fully developed and comparable to normal piglets seven days after birth. The number of fibers which became converted from Type II to Type I was increased; the fiber types were differentiated with regard to the PAS reaction and to their ATPase, SDH and PH activities. Morphological features of motor endplates in muscles of normal and surviving splaylegged piglets are similar. Histochemical investigation of the fiber type differentiation thus suggests that full recovery occurs within the first week of postnatal life in muscles affected by pathological changes accompanying splayleg.  相似文献   

12.
Do muscle fiber properties commonly associated with fiber types in adult animals and the population distribution of these properties require normal activation patterns to develop? To address this issue, the activity of an oxidative [succinic dehydrogenase (SDH)] and a glycolytic [alpha-glycerophosphate dehydrogenase (GPD)] marker enzyme, the characteristics of myosin adenosinetriphosphatase (myosin ATPase, alkaline preincubation), and the cross-sectional area of single fibers were studied. The soleus and medial gastrocnemius of normal adult cats were compared with cats that 6 mo earlier had been spinally transected at T12-T13 at 2 wk of age. In control cats, SDH activity was higher in dark than light ATPase fibers in the soleus and higher in light than dark ATPase fibers in the medial gastrocnemius. After transection, SDH activity was similar to control in both muscles. GPD activity appeared to be elevated in some fibers in each fiber type in both muscles after transection. The cross-sectional areas most affected by spinal transection were light ATPase fibers of the soleus and dark ATPase fibers of the medial gastrocnemius, the predominant fiber type in each muscle. These data demonstrate that although the muscle fibers of cats spinalized at 2 wk of age presumably were never exposed to normal levels of activation, the activity of an oxidative marker enzyme was maintained or elevated 6 mo after spinal transection. Furthermore, although the absolute enzyme activities in some fibers were elevated by transection, three functional protein systems commonly associated with fiber types, i.e., hydrolysis of ATP by myosin ATPase and glycolytic (GPD) and oxidative (SHD) metabolism, developed in a coordinated manner typical of normal adult muscles.  相似文献   

13.
The effect of growth on the capillarity and fiber type composition of the diaphragm, soleus and extensor digitorum longus (EDL) muscles of rats weighing between 55 and 330 g have been studied. Muscle samples obtained from the anesthetized rat were rapidly frozen and sliced transversely in a cryostat. The sections were stained histochemically by the SDH method and the myosin ATPase method after preincubation at pH 4.3 to typify fibers (FG, FOG and SO fibers). To visualize capillaries, the myosin ATPase method after preincubation at pH 4.0 was used. The percentage of FOG fibers decreased in all muscles with growth. While the FG and SO fibers increased in the diaphragm, SO fibers increased in the soleus, and FG fibers increased in the EDL. The capillary density showed a hyperbolic decrease with growth in all muscles, while the number of capillaries around each fiber increased in all muscles with growth. It is concluded that growth causes the changing properties of the motoneurons and the new capillary formation in the diaphragm muscle, as well as the soleus and EDL muscles.  相似文献   

14.
Yu ZB  Gao F 《中国应用生理学杂志》2005,21(4):449-452,i0011
目的:探讨萎缩骨骼肌单位面积上等长收缩最大张力(Pt)降低的机理.方法:采用肌球蛋白ATP酶抑制剂BDM(Butanedione monoxime)灌流,观测其对离体骨骼肌肌条等长收缩功能的影响.结果:研究表明,BDM可使比目鱼肌(SOL)与趾长伸肌(EDL)等长收缩Pt明显降低,BDM对骨骼肌收缩功能的抑制呈剂量依赖性关系,且完全可逆.低浓度BDM(1 mmol/L)仅降低骨骼肌等长收缩的Pt而不影响其收缩时程,高浓度(10 mmol/L)下使收缩时程明显缩短.与SOL相比,在10mmol/LBDM作用下,使EDL等长收缩Pt降低一半的时间明显加快.无论在低浓度还是高浓度下,BDM对EDL肌球蛋白ATP酶活性的抑制作用均大于SOL.在相同浓度下,BDM对Pt的抑制程度远远大于对肌球蛋白ATP酶活性的抑制.结论:这些结果提示骨骼肌横桥功能降低可能是其等长收缩pt下降的原因之一;BDM并非特异型肌球蛋白ATP酶抑制剂,可对兴奋-收缩偶联的多个环节产生影响.  相似文献   

15.
Hindlimb suspension (HS) results in whole muscle atrophic and metabolic changes that vary in magnitude in different hindlimb muscles. The present study was designed to investigate these effects in single fibers. Fiber type and size and the activities of two metabolic marker enzymes were determined in a deep (close to the bone) and a superficial (away from the bone) region of the medial gastrocnemius (MG) and the tibialis anterior (TA) of control (CON) and 28-day HS adult female rats. Fibers were classified as dark or light adenosinetriphosphatase (ATPase) based on their qualitative staining reaction for myosin ATPase following alkaline preincubation. Fiber area and succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) activities were determined in tissue sections by use of an image analysis system. After 28 days of HS, the mean body weights of the CON and HS were similar. MG atrophied 28%, whereas TA weight was maintained in the HS. Both dark and light ATPase fibers in the deep region of the MG had smaller cross-sectional areas following HS, with the atrophic response being approximately twice as great in the light ATPase fibers. No significant changes in fiber type composition in either muscle or in fiber sizes in the superficial region of the MG or in either region of the TA were observed. Mean SDH activities of both fiber types were significantly lower in the MG and TA following HS. In contrast, mean GPD activities were either increased or maintained in light and dark ATPase fibers of both muscles in HS. Changes in SDH and GPD activity could not be directly linked to changes in fiber cross-sectional area. In summary, these data suggest an independence of the mechanisms determining muscle fiber size and metabolic adaptations associated with HS.  相似文献   

16.
Changes both in the ATPase myofibrillar profile and in the electrophoretic pattern of myosin isoforms were examined in the mouse dorsal skeletal muscle (longissimus) during postnatal development. In the newborn, only type II C and a few type I fibers were present; differentiation into type II A and II B fibers took place during the 3 weeks following birth. During the same period, a transition from three neonatal isomyosins to four adult isoforms was observed. The two phenomena were related to a marked increase in the serum thyroid hormones levels. Hypothyroidism and hyperthyroidism experiments were performed. Hypothyroidism produced by propylthiouracil treatment of pregnant females and thiourea injections of the litters was shown to induce a complete inhibition of postnatal muscular differentiation. Hyperthyroidism produced by triiodothyronine treatment of the neonate mice significantly accelerated the myosin transition and the switch in the myofibrillar pattern. Our results suggest a primordial role for thyroid hormones in directly regulating the appearance of myosin and fiber adult types and in modulating directly or indirectly the disappearance of the neonatal types.  相似文献   

17.
朱道立 《四川动物》2006,25(4):718-725,F0002
应用建立在肌球蛋白重链异构体基础上的标准肌动球蛋白ATP酶和琥珀酸脱氢酶组织化学方法,分析大鼠和家兔出生后发育各年龄阶段跖肌纤维型分布。在生后2周至24周龄的大鼠和家兔Ⅰ、ⅡX型肌纤维百分比例减少,而ⅡA、ⅡB型纤维则增加。进行大量单肌纤维的组织化学特征的比较和相关性探讨。结果显示动物平均体重与跖肌的平均湿重随生后发育逐渐增加,Ⅰ、ⅡX、ⅡA及ⅡB型纤维均在生后各年龄组的全部肌肉内被发现,但出生后2日龄组是个例外。在生后发育期间,雄性大鼠和家兔ⅡB型纤维的平均肌纤维型构成要大于雌性大鼠和家兔,而雄性大鼠和家兔Ⅰ、ⅡX、ⅡA型三种氧化组织化学分类的肌纤维型构成均小于雌性大鼠和家兔。大鼠Ⅰ、ⅡX、ⅡA和ⅡB型纤维的平均横切面积显然要比家兔的同类型肌纤维要小。在大鼠和家兔可见明显的性别差异。大鼠和家兔的ⅡX型纤维横切面积是最小的,Ⅰ、ⅡA型纤维呈中等大小,ⅡB型纤维最大。该重要的测试有助于我们深入研究啮齿类动物快肌纤维生理特征的适应。  相似文献   

18.
Regeneration of rat fast (gastrocnemius medialis) and slow (soleus) muscles was examined after degeneration of myofibers had been achieved by injection of cardiotoxin into the hindleg during the first week after birth. Myogenesis in the regenerating muscles was compared to postnatal myogenesis in the contralateral and in control muscles. Synthesis of embryonic and neonatal myosin isoforms was initiated 3 days after injury. These forms were gradually replaced by the intermediate and fast adult isoforms (type II fiber myosins), whose synthesis followed the same curve in regenerating, contralateral, and control muscles. In contrast, synthesis of the slow myosin isoform (type I fiber myosin) was greatly delayed in injured muscles, but eventually became equal to its synthesis in contralateral and control muscles. It therefore appears that synthesis of type II fiber myosins is similarly regulated, probably by thyroid hormone, in developing regenerating and normal muscles, while synthesis of type I fiber myosin depends on other factor(s).  相似文献   

19.
The differentiation of distinct myotube fiber types in chick limb muscle development is coincident with innervation. The role of motoneurons in influencing fiber type differentiation was analyzed by causing chick hind limb muscles to be innervated by inappropriate motoneurons and then examining experimental muscles for changes in the distribution of myosin ATPase fiber types. Motoneuron innervation of limb muscles was altered by performing either limb shifts, limb reversals, or large spinal cord reversals on early neural tube or limb bud stage chick embryos. The distribution of fiber types was then analyzed in muscles from stage 36 (E10) to stage 45 (E20) embryos after processing hind limb sections for myosin ATPase histochemistry. In the majority of experimental muscles examined (267/312), the distribution of myosin ATPase fiber types was unaltered. In the remaining experimental muscles (14%), alterations in the distribution of myosin ATPase fiber types occurred, indicating that in some cases, foreign innervation may alter the developmental program of differentiating myotubes. The results suggest that myotubes differentiate myosin ATPase staining characteristics according to an intrinsic program and that these differentiating myotubes are selectively innervated by motoneurons of the appropriate type under most conditions including normal development. Under exceptional circumstances of motoneuron-muscle fiber type mismatch, embryonic motoneurons can alter fiber type expression.  相似文献   

20.
The postnatal development of extrafusal fibers in the slow-twitch soleus muscle of genetically dystrophic C57BL/6J dy2J/dy2J mice and their normal age-matched controls was investigated by histochemical and quantitative methods at selected ages of 4, 8, 12, and 32 weeks. The majority of fibers in the soleus consisted of two kinds, fast-twitch oxidative-glycolytic (FOG) and slow-twitch oxidative (SO), according to reactions for alkaline-stable and acid-stable myosin ATPase and the oxidative enzyme, NADH-tetrazolium reductase. A minor population of fibers, stable for both alkaline- and acid-preincubated ATPase, but variable in staining intensity for NADH-TR, were designated "atypical" fibers. With age, the normal soleus exhibited a gradual increase in the number and proportion of SO fibers and a reciprocal, steady decline in the percentage of FOG fibers. Atypical fibers were numerous at 4 weeks, but were substantially diminished at later ages. Since total extrafusal fiber number remained relatively constant between the periods examined, this change in relative proportions reflects an adaptive transformation of fiber types characteristic of normal postnatal growth. A striking alteration in the number and distribution of fiber types was associated with the dystrophic soleus. At 4 weeks an 18% reduction in total fiber number was already noted. Subsequently, by 32 weeks a further 22% diminution in overall fiber number had occurred. With age, the absolute number and proportion of dystrophic SO fibers were drastically reduced. In contrast, the percentage of dystrophic FOG fibers increased significantly while their absolute numbers between 4 and 32 weeks remained relatively constant. Atypical fibers in the dystrophic solei were found in elevated numbers at all age groups, particularly at 12 weeks. They may, in part, represent attempts at regeneration or an intermediate stage in fiber-type transformation. Microscopically, both of the major fiber types appeared affected, albeit differently, by the dystrophic process. We suggest that a failure or retardation in the normal postnatal conversion of fiber types within the soleus muscle occurs in this murine model for muscular dystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号