首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
P. Morcillo  C. Rosen    D. Dorsett 《Genetics》1996,144(3):1143-1154
The mechanisms that allow enhancers to activate promoters from thousands of base pairs away are disrupted by the suppressor of Hairy-wing protein (SUHW) of Drosophila. SUHW binds a DNA sequence in the gypsy retrotransposon and prevents enhancers promoter-distal to a gypsy insertion in a gene from activating without affecting promoter-proximal enhancers. Several observations indicate that SUHW does not affect enhancer-binding activators. Instead, SUHW may interfere with factors that structurally facilitate interactions between an enhancer and promoter. To identify putative enhancer facilitators, a screen for mutations that reduce activity of the remote wing margin enhancer in the cut gene was performed. Mutations in scalloped, mastermind, and a previously unknown gene, Chip, were isolated. A TEA DNA-binding domain in the Scalloped protein binds the wing margin enhancer. Interactions between scalloped, mastermind and Chip mutations indicate that mastermind and Chip act synergistically with scalloped to regulate the wing margin enhancer. Chip is essential and also affects expression of a gypsy insertion in Ultrabithorax. Relative to mutations in scalloped or mastermind, a Chip mutation hypersensitizes the wing margin enhancer in cut to gypsy insertions. Therefore, Chip might encode a target of SUHW enhancer-blocking activity.  相似文献   

2.
3.
4.
R A Rollins  P Morcillo  D Dorsett 《Genetics》1999,152(2):577-593
How enhancers are able to activate promoters located several kilobases away is unknown. Activation by the wing margin enhancer in the cut gene, located 85 kb from the promoter, requires several genes that participate in the Notch receptor pathway in the wing margin, including scalloped, vestigial, mastermind, Chip, and the Nipped locus. Here we show that Nipped mutations disrupt one or more of four essential complementation groups: l(2)41Ae, l(2)41Af, Nipped-A, and Nipped-B. Heterozygous Nipped mutations modify Notch mutant phenotypes in the wing margin and other tissues, and magnify the effects that mutations in the cis regulatory region of cut have on cut expression. Nipped-A and l(2)41Af mutations further diminish activation by a wing margin enhancer partly impaired by a small deletion. In contrast, Nipped-B mutations do not diminish activation by the impaired enhancer, but increase the inhibitory effect of a gypsy transposon insertion between the enhancer and promoter. Nipped-B mutations also magnify the effect of a gypsy insertion in the Ultrabithorax gene. Gypsy binds the Suppressor of Hairy-wing insulator protein [Su(Hw)] that blocks enhancer-promoter communication. Increased insulation by Su(Hw) in Nipped-B mutants suggests that Nipped-B products structurally facilitate enhancer-promoter communication. Compatible with this idea, Nipped-B protein is homologous to a family of chromosomal adherins with broad roles in sister chromatid cohesion, chromosome condensation, and DNA repair.  相似文献   

5.
Mutations in the suppressor of Hairy-wing [su(Hw)] locus reverse the phenotype of a number of tissue-specific mutations caused by insertion of a gypsy retrotransposon. The su(Hw) gene encodes a zinc finger protein which binds to a 430 bp region of gypsy shown to be both necessary and sufficient for its mutagenic effects. su(Hw) protein causes mutations by inactivation of enhancer elements only when a su(Hw) binding region is located between these regulatory sequences and a promoter. To understand the molecular basis of enhancer inactivation, we tested the effects of su(Hw) protein on expression of the mini-white gene. We find that su(Hw) protein stabilizes mini-white gene expression from chromosomal position-effects in euchromatic locations by inactivating negative and positive regulatory elements present in flanking DNA. Furthermore, the su(Hw) protein partially protects transposon insertions from the negative effects of heterochromatin. To explain our current results, we propose that su(Hw) protein alters the organization of chromatin by creating a new boundary in a pre-existing domain of higher order chromatin structure. This separates enhancers and silencers distal to the su(Hw) binding region into an independent unit of gene activity, thereby causing their inactivation.  相似文献   

6.
7.
8.
Mutations induced by the gypsy retrotransposon in the forked (f) and cut (ct) loci render their expression under the control of the suppressor of Hairy-wing [su(Hw)] gene. This action is usually recessive, but su(Hw) acts as a dominant on the alleles fk, ctk and ctMRpN30. Molecular analysis of the gypsy element present in fk indicates that this allele is caused by the insertion of a modified gypsy in which the region normally containing twelve copies of the octamer-like repeat that interacts with the su(Hw) product is altered. Analysis of the gypsy element responsible for the ctk and ctMRpN30 mutations also reveals a correlation between the dominant action of su(Hw) and disruption of the octamer region. We propose that these disruptions alter the affinity and interaction of su(Hw) protein with gypsy DNA, thereby sensitizing the mutant phenotype to fluctuations in su(Hw) product.  相似文献   

9.
The cut locus is a complex gene whose function is necessary for specification of a number of cell types, including the external sensory organs. The cut wing class of mutations of the cut locus are homozygous viable and lack tissue from the wing margin, which is normally composed of external sensory organs and noninnervated bristles. Expression of cut was examined in the developing wings of wild-type and mutant pupae using an antiserum against Cut protein. Cut is expressed in all of the external sensory organs of the wing and the noninnervated bristles of the posterior margin. The cut wing class of mutations prevents Cut expression specifically in the wing margin mechanoreceptors and noninnervated bristles, apparently preventing neural differentiation. The transformed cells die soon after differentiation would have occurred. We identify an enhancer, located about 80 kb upstream of the cut gene promoter, that confers expression in the cells of the mechanoreceptors and noninnervated bristles from a heterologous promoter. The 27 gypsy retrotransposon insertions that prevent expression in these margin cells, all occur between this enhancer and the promoter. These gypsy insertions probably interfere with the interaction between the enhancer and the cut gene promoter.  相似文献   

10.
The Drosophila mod(mdg4) gene products counteract heterochromatin-mediated silencing of the white gene and help activate genes of the bithorax complex. They also regulate the insulator activity of the gypsy transposon when gypsy inserts between an enhancer and promoter. The Su(Hw) protein is required for gypsy-mediated insulation, and the Mod(mdg4)-67.2 protein binds to Su(Hw). The aim of this study was to determine whether Mod(mdg4)-67.2 is a coinsulator that helps Su(Hw) block enhancers or a facilitator of activation that is inhibited by Su(Hw). Here we provide evidence that Mod(mdg4)-67.2 acts as a coinsulator by showing that some loss-of-function mod(mdg4) mutations decrease enhancer blocking by a gypsy insert in the cut gene. We find that the C terminus of Mod(mdg4)-67.2 binds in vitro to a region of Su(Hw) that is required for insulation, while the N terminus mediates self-association. The N terminus of Mod(mdg4)-67.2 also interacts with the Chip protein, which facilitates activation of cut. Mod(mdg4)-67.2 truncated in the C terminus interferes in a dominant-negative fashion with insulation in cut but does not significantly affect heterochromatin-mediated silencing of white. We infer that multiple contacts between Su(Hw) and a Mod(mdg4)-67.2 multimer are required for insulation. We theorize that Mod(mdg4)-67.2 usually aids gene activation but can also act as a coinsulator by helping Su(Hw) trap facilitators of activation, such as the Chip protein.  相似文献   

11.
12.
13.
14.
A typical example of transvection is a complementation between alleles in the yellow locus: y2 (mdg4 insertion inactivating certain y-enhancers) and y1 (deletion of the y-promoter but not of the enhancer). Transvection was explained by trans-activation of promoter in y2-allele by enhancer of y1-allele. Here we found that the mutation mod(mdg4)1u1 in the modifier of mdg4 locus (a regulatory gene controlling, together with suppressor of Hairy wing) expression of (mdg4) completely suppress the complementation. Removal of an acidic domain from su(Hw) protein product in su(Hw)j mutation partially suppress the complementation. We also have found that mod(mdg4)1u1 mutation trans-inactivates the yellow allele with a wild type phenotype (y+2MC) in heterozygote with the y2 allele, i.e. the negative transvection takes place. In this case, deletion removing an acidic domain even in one copy of su(Hw) suppresses the effect of mod(mdg4)1u1 mutation.  相似文献   

15.
The phenomenon of transvection has been well characterized for the yellow locus in Drosophila. Enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other when its own enhancers are blocked by the su(Hw) insulator introduced by the gypsy retrotransposon. Insertion of another gypsy into the neighboring scute locus hinders transvection presumably owing to disruption of chromosomal synapsis between the yellow alleles. We determined the sequences of gypsy required for inhibition of transvection. Two partial revertants of the scD1 mutation were obtained in which transvection between the yellow alleles was restored. Both sc revertants were generated by deletion of nine of the twelve su(Hw)-binding sites of gypsy inserted into the scute locus. This result suggests that the su(Hw) region is required for an interaction between two gypsy elements that disrupts trans activation of the yellow promoter by enhancers located on the homologous chromosome.  相似文献   

16.
17.
18.
P elements are widely used as insertional mutagens to tag genes, facilitating molecular cloning and analyses. We modified a P element so that it carried two copies of the suppressor of Hairy-wing [su(Hw)] binding regions isolated from the gypsy transposable element. This transposon was mobilized, and the genetic consequences of its insertion were analyzed. Gene expression can be altered by the su(Hw) protein as a result of blocking the interaction between enhancer/silencer elements and their promoter. These effects can occur over long distances and are general. Therefore, a composite transposon (SUPor-P for suppressor-P element) combines the mutagenic efficacy of the gypsy element with the controllable transposition of P elements. We show that, compared to standard P elements, this composite transposon causes an expanded repertoire of mutations and produces alleles that are suppressed by su(Hw) mutations. The large number of heterochromatic insertions obtained is unusual compared to other insertional mutagenesis procedures, indicating that the SUPor-P transposon may be useful for studying the structural and functional properties of heterochromatin.  相似文献   

19.
20.
H N Cai  M Levine 《The EMBO journal》1997,16(7):1732-1741
The Drosophila gypsy retrotransposon disrupts gene activity by blocking the interactions of distal enhancers with target promoters. This enhancer-blocking activity is mediated by a 340 bp insulator DNA within gypsy. The insulator contains a cluster of binding sites for a zinc finger protein, suppressor of Hairy wing [su(Hw)]. Recent studies have shown that a second protein, mod(mdg4), is also important for normal insulator function. Mutations in mod(mdg4) exert paradoxical effects on different gypsy-induced phenotypes. For example, it enhances yellow2 but suppresses cut6. Here, we employ a stripe expression assay in transgenic embryos to investigate the role of mod(mdg4) in gypsy insulator activity. The insulator was inserted between defined enhancers and placed among divergently transcribed reporter genes (white and lacZ) containing distinct core promoter sequences. These assays indicate that mod(mdg4) is essential for the enhancer-blocking activity of the insulator DNA. Moreover, reductions in mod(mdg4)+ activity cause the insulator to function as a promoter-specific silencer that selectively represses white, but not lacZ. The repression of white does not affect the expression of the closely linked lacZ gene, suggesting that the insulator does not propagate changes in chromatin structure. These results provide an explanation for why mod(mdg4) exerts differential effects on different gypsy-induced mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号