首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As a result of increased anthropogenic nitrogen (N) loading in surface waters of agricultural watersheds, there is enhanced interest to understand and quantify N removal mechanisms. Denitrification, an important N removal mechanism in aquatic systems, may contribute to reducing N pollution in agricultural headwater streams. However, the key factors controlling this process in lotic systems remain unclear. The objective of our study was to examine the factors regulating rates of denitrification in the sediments of agricultural headwater streams in the mid-western USA. Denitrification rates were variable among streams and treatments (<0.1–28.0 μg N g AFDM−1 h−1) and on average, were higher than those reported for similar headwater streams. Carbon quantity and quality, and pH had no effect on denitrification, while temperature and nitrate ( ) concentrations had a positive effect on rates of denitrification. Specifically, controlled denitrification following Michaelis-Menten kinetics. We calculated a value of km (1.0 mg -N L-1) that was comparable to other studies in aquatic sediments but was well below the median in-stream concentrations (5.2–17.4 mg -N L−1) observed at the study sites. Despite high rates of denitrification, this removal mechanism is most likely saturated in the agricultural headwater streams we examined, suggesting that these systems are not effective at removing in-stream N. Handling editor: D. Ryder  相似文献   

2.
We present long-term nutrient data on the Changjiang River (Yangtze River) at six hydrological stations and eight principal tributaries during the period 1958–1985. Three patterns of temporal changes were observed in nitrate and nitrite : minimal variations in the upper catchment area, rapid increases in the middle watershed towards the end of the 1970s, and a gradual increase in the lower drainage basin. Prior to the 1970s, the level of throughout the Changjiang River system remained fairly constant. In the 1980s, however, this changed, with the lowest values in the upper Changjiang changing rapidly to the highest in the middle reaches and then declining slowly but steadily in the lower courses. Compared to and ammonium and soluble reactive phosphorus (SRP) showed smaller increases or no long-term variations, while dissolved silica (DSi) concentration generally decreased at most stations. These three patterns of and changes in the Changjiang River system were reflective of the difference in chemical fertilizer use and landscape features (e.g., slope, soil type and water body area) of the drainage basins of the primary tributaries. The decreases in DSi were most likely attributed to a reduction in suspended sediment loading due to dam constructions and increasing diatom consumption. The increase in and with a reduction in DSi concentrations in the Changjiang River could have significant effects on the stoichiometric balance of nutrients delivered to the East China Sea and the ecosystem in this dynamic region.  相似文献   

3.
Effects of light on the short term competition for organic and inorganic nitrogen between maize and rhizosphere microorganisms were investigated using a mixture of amino acid, ammonium and nitrate under controlled conditions. The amount and forms of N added in the three treatments was identical, but only one of the three N forms was labeled with 15N. Glycine was additionally labeled with 14C to prove its uptake by maize and incorporation into microbial biomass in an intact form. Maize out-competed microorganisms for during the whole experiment under low and high light intensity. Microbial uptake of 15N and 14C was not directly influenced by the light intensity, but was indirectly related to the impact the light intensity had on the plant. More was recovered in microbial biomass than in plants in the initial 4 h under the two light intensities, although more 15N-glycine was incorporated into microbial biomass than in plants in the initial 4 h under low light intensity. Light had a significant effect on uptake by maize, but no significant effects on the uptake of or 15N-glycine. High light intensity significantly increased plant uptake of and glycine 14C. Based on 14C to 15N recovery ratios of plants, intact glycine contributed at least 13% to glycine-derived nitrogen 4 h after tracer additions, but it contributed only 0.5% to total nitrogen uptake. These findings suggest that light intensity alters the competitive relationship between maize roots and rhizosphere microorganisms and that C4 cereals such as maize are able to access small amounts of intact glycine. We conclude that roots were stronger competitor than microorganisms for inorganic N, but microorganisms out competed plants during a short period for organic N, which was mineralized into inorganic N within a few hours of application to the soil and was thereafter available for root uptake.  相似文献   

4.
Using a recombinant luminescent Nitrosomonas europaea assay to quantify biological nitrification inhibition (BNI), we found that a wild relative of wheat (Leymus racemosus (Lam.) Tzvelev) had a high BNI capacity and releases about 20 times more BNI compounds (about 30 ATU g−1 root dry weight 24 h−1) than Triticum aestivum L. (cultivated wheat). The root exudate from cultivated wheat has no inhibitory effect on nitrification when applied to soil; however, the root exudate from L. racemous suppressed formation and kept more than 90% of the soil’s inorganic-N in the -form for 60 days. The high-BNI capacity of L. racemosus is mostly associated with chromosome Lr#n. Two other chromosomes Lr#J, and Lr#I also have an influence on BNI production. Tolerance of L. racemosus to is controlled by chromosome 7Lr#1-1. Sustained release of BNI compounds occurred only in the presence of in the root environment. Given the level of BNI production expressed in DALr#n and assuming normal plant growth, we estimated that nearly 87,500,000 ATU of BNI activity ha−1 day−1 could be released in a field of vigorously growing wheat; this amounts to the equivalent of the inhibitory effect from the application of 52.5 g of the synthetic nitrification inhibitor nitrapyrin (one AT unit of BNI activity is equivalent to 0.6 μg of nitrapyrin). At this rate of BNI production it would take only 19 days for a BNI-enabled wheat crop to produce the inhibitory power of a standard commercial application of nitrapyrin, 1 kg ha−1. The synthetic nitrification inhibitor, dicyandiamide, blocked specifically the AMO (ammonia monooxygenase) pathway, while the BNI from L. racemosus blocked the HAO (hydroxylamine oxidoreductase) pathway in Nitrosomonas. Here we report the first finding of high production of BNI in a wild relative of any cereal and its successful introduction and expression in cultivated wheat. These results demonstrate the potential for empowering the new generation of wheat cultivars with high-BNI capacity to control nitrification in wheat-production systems. Responsible Editor: Hans Lambers.  相似文献   

5.
Forest soils are frequently subjected to dry–wet cycles, but little is known about the effects of repeated drying and wetting and wetting intensity on fluxes of , and DOC. Here, undisturbed soil columns consisting of organic horizons (O columns) and organic horizons plus mineral soil (O + M columns) from a mature Norway spruce stand at the Fichtelgebirge; Germany, were repeatedly desiccated and subsequently wetted by applying different amounts of water (8, 20 and 50 mm day−1) during the initial wetting phase. The constantly moist controls were not desiccated and received 4 mm day−1 during the entire wetting periods. Cumulative inorganic N fluxes of the control were 12.4 g N m−2 (O columns) and 11.4 g N m−2 (O + M columns) over 225 days. Repeated drying and wetting reduced cumulative and fluxes of the O columns by 47–60 and 76–85%, respectively. Increasing (0.6–1.1 g N m−2) and decreasing fluxes (7.6–9.6 g N m−2) indicate a reduction in net nitrification in the O + M columns. The negative effect of dry–wet cycles was attributed to reduced net N mineralisation during both the desiccation and wetting periods. The soils subjected to dry–wet cycles were considerably drier at the final wetting period, suggesting that hydrophobicity of soil organic matter may persist for weeks or even months. Based on results from this study and from the literature we hypothesise that N mineralisation is mostly constrained by hydrophobicity in spruce forests during the growing season. Wetting intensity did mostly not alter N and DOC concentrations and fluxes. Mean DOC concentrations increased by the treatment from 45 mg l−1 to 61–77 mg l−1 in the O tlsbba columns and from 12 mg l−1 to 21–25 mg l−1 in the O + M columns. Spectroscopic properties of DOC from the O columns markedly differed within each wetting period, pointing to enhanced release of rather easily decomposable substrates in the initial wetting phases and the release of more hardly decomposable substrates in the final wetting phases. Our results suggest a small additional DOC input from organic horizons to the mineral soil owing to drying and wetting.  相似文献   

6.
Anaerobic Ammonium Oxidation (Anammox) in Chesapeake Bay Sediments   总被引:5,自引:0,他引:5  
Anaerobic ammonium oxidation (anammox) has recently been recognized as a pathway for the removal of fixed N from aquatic ecosystems. However, the quantitative significance of anammox in estuarine sediments is variable, and measurements have been limited to a few estuaries. We measured anammox and conventional denitrification activities in sediments along salinity gradients in the Chesapeake Bay and two of its sub-estuaries, the Choptank River and Patuxent River. Homogenized sediments were incubated with 14/15N amendments of , , and to determine relative activities of anammox and denitrification. The percent of N2 production due to anammox (ra%) ranged from 0 to 22% in the Chesapeake system, with the highest ra% in the freshwater portion of the main stem of upper Chesapeake Bay, where water column concentrations are consistently high. Intermediate levels of relative anammox (10%) were detected at locations corresponding to tidal freshwater and mesohaline locations in the Choptank River, whereas anammox was not detected in the tidal freshwater location in the Patuxent River. Anammox activity was also not detected in the seaward end of Chesapeake Bay, where water column concentrations are consistently low. The ra% did not correlate with accumulation rate in anoxic sediment incubations, but ra% was related to water column concentrations and salinity. Anammox bacterial communities were also examined by amplifying DNA extracted from the upper Chesapeake Bay sediment with polymerase chain reaction (PCR) primers that are specific for 16S rRNA genes of anammox organisms. A total of 35 anammox-like sequences were detected, and phylogenetic analysis grouped the sequences in two distinct clusters belonging to the Candidatus “Scalindua” genus.  相似文献   

7.
Regulation of mineral nitrogen uptake in plants   总被引:15,自引:0,他引:15  
In the biosphere plants are exposed to different forms of N, which comprise mineral and organic N forms in soils as well as gaseous NH3, NOx, and molecular N2 in the atmosphere. The form of N uptake is mainly determined by its abundance and accessibility, which make and the most important N forms for plant nutrition under agricultural conditions. With minor importance, the form of N uptake is also subject to plant preferences, by which plants maintain their cation/anion balance during uptake. However, some species seem to have an obligatory preference which even prevents their growth on certain other N sources. In general, uptake of a certain N form closely matches the growth-related demand of the plant, at least when N transport to the root surface is not limiting. In addition, many plants accumulate large pools of N during vegetative growth which are remobilized in the generative stage. As a consequence, systems responsible for N transport need to be tightly regulated in their expression and activity upon sensing N availability and plant demand. Employing the tools of molecular genetics, the first plant genes encoding transporters for inorganic N have recently been isolated and characterized. These data can now complete the wealth of physiological and nutritional studies on N uptake. The present article will focus on the uptake of and into root cells and tries to link data derived from physiological, genetic and molecular studies.  相似文献   

8.
The uptake of nutrients from deep soil layers has been shown to be important for the long-term nutrient sustainability of forest soils. When modelling nutrient uptake in forest ecosystems, the nutrient uptake capacity of trees is usually defined by the root distribution. However, this leads to the assumption that roots at different soil depths have the same capacity to take up nutrients. To investigate if roots located at different soil depths differ in their nutrient uptake capacity, here defined as the nutrient uptake rate under standardized conditions, a bioassay was performed on excised roots (<1 mm) of eight oak trees (Quercus robur L.). The results showed that the root uptake rate of 86Rb+ (used as an analogue for K+) declined with increasing soil depth, and the same trend was found for . The root uptake rate of , on the other hand, did not decrease with soil depth. These different physiological responses in relation to soil depth indicate differences in the oak roots, and suggest that fine roots in shallow soil layers may be specialized in taking up nutrients such as K+ and which have a high availability in these layers, while oak roots in deep soil layers are specialized in taking up other resources, such as P, which may have a high availability in deep soil layers. Regardless of the cause of the difference in uptake trends for the various nutrients, these differences have consequences for the modelling of the soil nutrient pool beneath oak trees and raise the question of whether roots can be treated uniformly, as has previously been done in forest ecosystem models. Responsible Editor: Herbert Johannes Kronzucker.  相似文献   

9.
The pathway and ab initio direct kinetics of the decomposition 5-aminotetrazole (5-ATZ) to HN3 and NH2CN was investigated. Reactant, products and transition state were optimized with MP2 and B3LYP methods using 6–311G** and aug-cc-pVDZ basis sets. The intrinsic reaction coordinate curve of the reaction was calculated using the MP2 method with 6–311G** basis set. The energies were refined using CCSD(T)/6–311G**. Rate constants were evaluated by conventional transition-state theory (CVT) and canonical variational transition-state theory (TST), with tunneling effect over 300 to 2,500 K. The results indicated that the tunneling effect and the variational effect are small for the calculated rate constants. The fitted three-parameter expression calculated using the CVT and TST methods are and , respectively. Figure The mechanism of the decomposition process of 5-ATZ to HN3 and NH2CN  相似文献   

10.
During the last 60 years, pollution of the groundwater with has greatly increased in many parts of Europe, as a consequence of excessive use of manure and synthetic fertilisers. Monitoring of groundwater-fed wetlands indicated that sediments with high concentrations had the lowest Fe and concentrations in the pore water. A comparison of two restored open water fens, differing in supply via the groundwater, indicated that the redox potential and the sulphate ( ) reduction rate were lower when the groundwater contained not only but also high concentrations. The lower reduction rates in the -rich open water fen were associated with lower concentrations and the presence of plant species characteristic of clear water. In contrast, the higher reduction rates in the -poor open water fen were associated with very high concentrations and massive development of plant species characteristic of eutrophic environments. Investigations at -rich seepage sites in black alder carrs, showed that high concentrations in the pore water caused chlorosis in the alder carr vegetation, due to lower availability of Fe in the pore water and less Fe uptake by the plants. Experimental desiccation of sediments proved that the -rich seepage sites contained no oxidisable FeS x , contrary to -poor locations, which became acidified and mobilised extremely high amounts of due to FeS x oxidation. A laboratory experiment showed that addition to sediments led to reduced releases of Fe, and S2–, very likely due to the oxidation of reduced Fe and S compounds. Overall, the results confirmed that is an energetically more favourable electron acceptor in anaerobic sediments than Fe and , and that high loads function as a redox buffer, preventing reduction of Fe and . Limited reduction prevents S2– -mediated mobilisation of from Fe- complexes. At a higher redox potential, reduced Fe, including FeS x , was oxidised, increasing the content of Fe(III) capable of binding . This prevented increased availability and the concomitant massive development of plant species characteristic of eutrophic environments.  相似文献   

11.
Interactions of structurally dissimilar anionic compounds with the plasma membrane of HEK293 cells were analyzed by patch clamp and electrorotation. The combined approach provides complementary information on the lipophilicity, preferential affinity of the anions to the inner/outer membrane leaflet, adsorption depth and transmembrane mobility. The anionic species studied here included the well-known lipophilic anions dipicrylamine (DPA), tetraphenylborate (TPB) and [W2(CO)10(S2CH)], the putative lipophilic anion and three new heterocyclic W(CO)5 derivatives. All tested anions partitioned strongly into the cell membrane, as indicated by the capacitance increase in patch-clamped cells. The capacitance increment exhibited a bell-shaped dependence on membrane voltage. The midpoint potentials of the maximum capacitance increment were negative, indicating the exclusion of lipophilic anions from the outer membrane leaflet. The adsorption depth of the large organic anions DPA, TPB and increased and that of W(CO)5 derivatives decreased with increasing concentration of mobile charges. In agreement with the patch-clamp data, electrorotation of cells treated with DPA and W(CO)5 derivatives revealed a large dispersion of membrane capacitance in the kilohertz to megahertz range due to the translocation of mobile charges. In contrast, in the presence of TPB and no mobile charges could be detected by electrorotation, despite their strong membrane adsorption. Our data suggest that the presence of oxygen atoms in the outer molecular shell is an important factor for the fast translocation ability of lipophilic anions.  相似文献   

12.
A novel molecular connectivity index, , based on the adjacency matrix of molecular graphs and novel atomic valence connectivities, , for predicting the molar diamagnetic susceptibilities of organic compounds is proposed. The is defined as: , where and Ei are the atomic valence connectivity and the valence orbital energy of atom i, respectively. A good QSPR model for molar diamagnetic susceptibilities can be constructed from and using multivariate linear regression (MLR). The correlation coefficient r, standard error, and average absolute deviation of the MLR model are 0.9918, 5.56 cgs, and 4.26 cgs, respectively, for the 721 organic compounds tested (training set). Cross-validation using the leave-one-out method demonstrates that the MLR model is highly reliable statistically. Using the MLR model, the average absolute deviations of the predicted values of molar diamagnetic susceptibility of another 360 organic compounds (test set) is 4.34 cgs. The results show that the current method is more effective than literature methods for estimating the molar diamagnetic susceptibility of an organic compound. The MLR method thus provides an acceptable model for the prediction of molar diamagnetic susceptibilities of organic compounds. Figure Plot of calculated vs experimental values of molar diamagnetic susceptibilities using the multivariate linear regression (MLR) model (Eq. 8)  相似文献   

13.
A carbon membrane-aerated biofilm reactor (CMABR) was developed to treat synthetic wastewater. Such membrane exhibited a high degree of adhesion and good permeability. Continuous experiments showed that COD and -N removal efficiency were 90 ± 2 and 92 ± 4% at removal rates of 35.6 ± 3.8 g COD/m2 per day and 9.3 ± 0.6 g -N/m2 per day, respectively. After 108 days, effluent total nitrogen (TN) kept at 35 ± 4 mg/L when influent -N increased to 144–164 mg/L and removal efficiency of TN reached 78 ± 3%. Furthermore, Stoichiometric analysis revealed that 70–90% of oxygen supplied was consumed by nitrifier. Scanning electron microscopic (SEM) images and component analysis of penetrating fluid revealed that extracellular polymeric substance (EPS) adhered to pore and that alkaline washing was an effective method to remove them. The study demonstrated that carbon membrane could be used as effective gas-permeable membrane in MABR for wastewater treatment.  相似文献   

14.
15.
The structures and stability of 1–7 dications were calculated at the ab initio MP2/aug-cc-pVTZ level of theory. The dications AlH2+ 1 and 2 were characterized to be unstable thermodynamically. However, these and the stable dications, 37 have considerable kinetic barriers for deprotonation. Each of the structures 37 contains one or more two-electron three-center (2e–3c) bonds. Aluminum atoms of these dications carry most of the positive charges, as indicated by NBO charge calculations.Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday  相似文献   

16.
Fluctuating hydrochemistry, as a result of extreme hydrological regimes, imposes major physiological constraints on the biota of ephemeral saline lakes. While the inverse relationship between salinity and zooplankton species richness is well-known across salinity gradients, few studies have documented closely the response of zooplankton to seasonal changes in salinity. Weekly sampling during two flood seasons at Sua Pan, an intermittent saline lake in central Botswana demonstrated the importance of spatial and temporal salinity gradients for crustacean community composition, associated with a decline in species richness, from 11 to three species. Conductivity ranged between 320 and 125,800 μS cm−1 during seasonal flooding; changing from dominance by and , Ca2+ and Mg2+, at the beginning of the floods, to NaCl dominated waters as the lake dried out and salinities increased. pH estimates generally ranged between 8.6 and 10, with maximum values recorded during initial flooding. Crustaceans comprised mainly Branchinella spinosa, Moina belli, Lovenula africana and Limnocythere tudoranceai, all of which occurred across a wide range of salinities, while halotolerant freshwater species (Metadiaptomus transvaalensis, Leptestheria striatochonca and the ostracods Plesiocypridopsis aldabrae, Cypridopsis newtoni and a newly identified Potamocypris species) disappeared above conductivities of 1,500 μS cm−1. A unique crustacean composition in southern Africa was attributed to Sua Pans’ rare chemical composition among southern African saline lakes; flood waters on Sua Pan contained a higher proportion of Na+ and , and less K+, Mg2+ and than over 80% of records from salt pans elsewhere in southern African. The freshwater species of crustaceans in Sua Pan were similar to those found in other southern Africa lakes, and these similarities decreased in lakes with higher pH and proportions of Na, and less SO4 and Mg in their chemical composition. The predominant saline tolerant species on Sua Pan, however, showed a greater similarity to those in saline lakes in southern and East Africa with higher proportions of and, particularly, Mg2+ in their chemical composition. Handling editor: J. M. Melack  相似文献   

17.
The biosorption of metal ions (Cr+3, , Cu+2, and Ni+2) on two algal blooms (designated HD-103 and HD-104) collected locally was investigated as a function of the initial metal ion concentration. The main constituent of HD-103 is Cladophora sp., while Spirulina sp. is present significantly in the bloom HD-104. Algal biomass HD-103 exhibited the highest Cu+2 uptake capacity (819 mg/g). This bloom adsorbed Ni+2 (504 mg/g), Cr+3 (347 mg/g), and (168 mg/g). Maximum of Ni+2 (1108 mg/g) is taken by HD-104. This species takes up 306, 202, and 576 mg/g Cr+3, , and Cu+2, respectively. Equilibrium data fit very well to both the Langmuir and the Freundlich isotherm models. The sorption process followed the Freundlich model better. Pseudo-first-order kinetic model could describe the kinetic data. Infrared (IR) spectroscopic data were employed to identify the site(s) of bonding. It was found that phosphate and peptide moieties participate in the metal uptake by bloom HD-103. In the case of bloom HD-104, carboxylate and phosphate are responsible for the metal uptake. The role of protein in metal uptake by HD-103 was investigated using polyacrylamide gel electrophoresis.  相似文献   

18.
A simple theoretical model of a Darwinian system (a periodic system with a multiplication phase and a selection phase) of entities (initial form of polymer strand, primary mutant and satellite mutants) is given. First case: one mutant is considered. One individual of the mutant appears in the multiplication phase of the first generation. The probabilities to find N individuals of the mutant after the multiplication phase M of the n-th generation (with probability δ of an error in the replication, where all possible errors are fatal errors) and after the following selection phase S (with probability β that one individual survives) are given iteratively. The evolutionary tree is evaluated. Averages from the distributions and the probability of extinction are obtained. Second case: two mutants are considered (primary mutant and new form). One individual of the primary mutant appears in the multiplication phase of the first generation. The probabilities to find N p individuals of the primary mutant and N m individuals of the new form after the multiplication phase M of the n-th generation (probability ɛ of an error in the replication of the primary mutant giving the new form) and after the following selection phase S (probabilities β p and β m that one individual each of the primary mutant and of the new form survives) are given iteratively. Again the evolutionary tree is evaluated. Averages from the distributions are obtained. The online version of the original article can be found at .  相似文献   

19.
Camu-camu is a tropical fruit with very high vitamin C content and commercialized as frozen pulp. Enthalpies of freezing, temperatures of the onset of ice melting, and glass transition temperatures of the maximally freeze-concentrated phase () of camu-camu pulp and of samples containing maltodextrin (DE20) and sucrose were measured by differential scanning calorimetry. Maltodextrin exhibited the largest freeze stabilization potential, increasing from −58.2 °C (natural pulp) to −39.6 °C when 30% (w/w) maltodextrin DE 20 was added. Sucrose showed negligible effect on but enhanced considerably the freezing point depression and less amount of ice was formed.  相似文献   

20.
It is now established that nitrogen monoxide is produced not only in animals but also in plants. However, much less is known about the pathways of generation and the functions of in planta. One of the possible targets of is leghemoglobin (Lb), the hemoprotein found in high concentrations in the root nodules of legumes that establish a symbiosis with nitrogen-fixing bacteria. In analogy to hemoglobin and myoglobin, we have shown that different forms of Lb react not only with , but also with so-called reactive nitrogen species derived from it, among others peroxynitrite and nitrite. Because of the wider active-site pocket, the rate constants measured in this work for and for nitrite binding to metLb are 1 order of magnitude larger than the corresponding values for binding of these species to metmyoglobin and methemoglobin. Moreover, we showed that reactive nitrogen species are able to react with two forms of Lb that are produced in vivo but that cannot bind oxygen: ferrylLb is reduced by and nitrite, and nitrosylLb is oxidized by peroxynitrite. The second-order rate constants of these reactions are on the order of 102, 106, and 105 M−1 s−1, respectively. In all cases, the final reaction product is metLb, a further Lb form that has been detected in vivo. Since a specific reductase is active in nodules, which reduces metLb, reactive nitrogen species could contribute to the recycling of these inactive forms to regenerate deoxyLb, the oxygen-binding form of Lb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号