首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Heat shock proteins (HSPs) are highly conserved among all organisms from prokaryotes to eukaryotes. In mice, the HSP genes Hsp70.1 and Hsp70.3 are induced by both endogenous and exogenous stressors, such as heat and toxicants. In order to determine whether such proteins specifically influence genomic instability, mice deficient for Hsp70.1 and Hsp70.3 (Hsp70.1/3(-/-) mice) were generated by gene targeting. Mouse embryonic fibroblasts (MEFs) prepared from Hsp70.1/3(-/-) mice did not synthesize Hsp70.1 or Hsp70.3 after heat-induced stress. While the Hsp70.1/3(-/-) mutant mice were fertile, their cells displayed genomic instability that was enhanced by heat treatment. Cells from Hsp70.1/3(-/-) mice also display a higher frequency of chromosome end-to-end associations than do control Hsp70.1/3(+/+) cells. To determine whether observed genomic instability was related to defective chromosome repair, Hsp70.1/3(-/-) and Hsp70.1/3(+/+) fibroblasts were treated with ionizing radiation (IR) alone or heat and IR. Exposure to IR led to more residual chromosome aberrations, radioresistant DNA synthesis (a hallmark of genomic instability), increased cell killing, and enhanced IR-induced oncogenic transformation in Hsp70.1/3(-/-) cells. Heat treatment prior to IR exposure enhanced cell killing, S-phase-specific chromosome damage, and the frequency of transformants in Hsp70.1/3(-/-) cells in comparison to Hsp70.1/3(+/+) cells. Both in vivo and in vitro studies demonstrate for the first time that Hsp70.1 and Hsp70.3 have an essential role in maintaining genomic stability under stress conditions.  相似文献   

5.
Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may be a critical molecule in multiple sclerosis (MS) pathogenesis and a potential target in this disease due to its immunological and cytoprotective functions. To investigate the role of Hsp70 in MS pathogenesis, we examined its immune and cytoprotective roles using both in vitro and in vivo experimental procedures. We found that Hsp70.1-deficient mice were more resistant to developing experimental autoimmune encephalomyelitis (EAE) compared with their wild-type (WT) littermates, suggesting that Hsp70.1 plays a critical role in promoting an effective myelin oligodendrocyte glycoprotein (MOG)-specific T cell response. Conversely, Hsp70.1-deficient mice that developed EAE showed an increased level of autoreactive T cells to achieve the same production of cytokines compared with the WT mice. Although a neuroprotective role of HSP70 has been suggested, Hsp70.1-deficient mice that developed EAE did not exhibit increased demyelination compared with the control mice. Accordingly, Hsp70 deficiency did not influence the vulnerability to apoptosis of oligodendrocyte precursor cells (OPCs) in culture. Thus, the immunological role of Hsp70 may be relevant in EAE, and specific therapies down-regulating Hsp70 expression may be a promising approach to reduce the early autoimmune response in MS patients.  相似文献   

6.
7.
8.
9.
To test the role of the heat shock protein hsp70 in induced thermotolerance and in the regulation of the heat-shock response, we established cell lines with altered expression of the Hsp70 gene. Underexpressing cells were created by transformation with antisense Hsp70 genes, and overexpressing cells by transformation with extra copies of the wild-type gene. Expression at normal temperatures was achieved by placing Hsp70 coding sequences under the control of the metallothionein promoter. Cells that expressed mutant hsp70s were created by transforming cells with deletion and frameshift mutations. The results indicate that hsp70 plays a major role in both thermotolerance and regulation. Surprisingly, they also indicate that these functions can be separated. Overexpression affected thermotolerance more than regulation; underexpression affected regulation more than thermotolerance. A carboxyl-terminal deletion of Hsp70 had a severe dominant-negative effect on thermotolerance but only a minor effect on regulation; an amino-terminal deletion strongly affected regulation but not thermotolerance. A model that explains these observations is presented.  相似文献   

10.
Members of heat shock proteins (Hsp70) family have been considered to respond to a large variety of stressful conditions. But it was suggested that, in pulmonary cells, Hsp response depends more closely on the type of stimulus. The lungs are critical organs potentially subjected to air pollution affecting respiratory function and, therefore, these organs are of particular interest with regard to the stress response. To investigate the stress dependence of Hsp70 response in lungs, we created transgenic mice where the firefly luciferase reporter gene is under the control of the murine hsp70-1 promoter and exposed them to different sublethal toxic conditions. For each condition, the level of transgene induction and pulmonary toxicity were assessed. We found that hsp70-1 promoter was stimulated by heat shock and cadmium but not by ozone, paraquat, and parathion, even if these chemicals induced respiratory distress and lung inflammation. Similar observations were made when expression of the endogenous hsp70-1 gene was analyzed, indicating that our transgenic model was accurately detecting hsp70-1 induction. Thereby, it appeared that hsp70-1 response is selective and depends on signaling pathways triggered by the toxicants rather than by their pathologic toxicity per se. Furthermore, because all the chemicals used in our study have been previously described to increase the level of oxidative stress, it indicates that there is no direct and simple correlation between hsp70-1 response and the level of oxidative stress, but more specific oxidative patterns should be involved in Hsp regulation.  相似文献   

11.
12.
13.
Heat shock is a routine method used for inducible gene expression in animal models including zebrafish. Environmental temperature plays an important role in the immune system and infection progression of ectotherms. In this study, we analyzed the impact of short-term heat shock on neutrophil function using zebrafish (Danio rerio) as an animal model. Short-term heat shock decreased neutrophil recruitment to localized Streptococcus iniae infection and tail fin wounding. Heat shock also increased random neutrophil motility transiently and increased the number of circulating neutrophils. With the use of the translating ribosome affinity purification (TRAP) method for RNA isolation from specific cell types such as neutrophils, macrophages and epithelial cells, we found that heat shock induced the immediate expression of heat shock protein 70 (hsp70) and a prolonged expression of heat shock protein 27 (hsp27). Heat shock also induced cell stress as detected by the splicing of X-box binding protein 1 (xbp1) mRNA, a marker for endoplasmic reticulum (ER) stress. Exogenous expression of Hsp70, Hsp27 and spliced Xbp1 in neutrophils or epithelial cells did not reproduce the heat shock induced effects on neutrophil recruitment. The effect of heat shock on neutrophils is likely due to a combination of complex changes, including, but not limited to changes in gene expression. Our results indicate that routine heat shock can alter neutrophil function in zebrafish. The findings suggest that caution should be taken when employing a heat shock-dependent inducible system to study the innate immune response.  相似文献   

14.
15.
We compared transgenic Drosophila larvae varying in hsp70 copy number the consequences of Hsp70 overexpression for growth and development after heat shock. Exposure to a mildy elevated temperature (36°C) induced expression of Hsp70 (and presumably other heat shock proteins) and improved tolerance of more severe heat stress, 38.5–39.5°C. We examined this pattern in two independently derived pairs of extra-copy and excision strains that different primarily in hsp70 copy number (with 22 and 10 copies, respectively). Extra-copy larvae produced more Hsp70 in response to high temperature than did excision larvae, but surpassed the excision strain in survival only immediately after thermal stress. Excision larvae survived to adulthood at higher proportions than did extra-copy larvae and grew more rapidly after thermal stress. Furthermore, multiple pretreatment reduced survival of 1st-instar extra-copy larvae, but did not affect the corresponding excision strain. While extra Hsp70 provides additional protection against the immediate damage from heat stress, abnormally high concentrations can decrease growth, development and survival to adulthood.  相似文献   

16.
Gong WJ  Golic KG 《Genetics》2006,172(1):275-286
The heat-shock response is a programmed change in gene expression carried out by cells in response to environmental stress, such as heat. This response is universal and is characterized by the synthesis of a small group of conserved protein chaperones. In Drosophila melanogaster the Hsp70 chaperone dominates the profile of protein synthesis during the heat-shock response. We recently generated precise deletion alleles of the Hsp70 genes of D. melanogaster and have used those alleles to characterize the phenotypes of Hsp70-deficient flies. Flies with Hsp70 deletions have reduced thermotolerance. We find that Hsp70 is essential to survive a severe heat shock, but is not required to survive a milder heat shock, indicating that a significant degree of thermotolerance remains in the absence of Hsp70. However, flies without Hsp70 have a lengthened heat-shock response and an extended developmental delay after a non-lethal heat shock, indicating Hsp70 has an important role in recovery from stress, even at lower temperatures. Lack of Hsp70 also confers enhanced sensitivity to a temperature-sensitive lethal mutation and to the neurodegenerative effects produced by expression of a human polyglutamine disease protein.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号