首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A new family of centromeric highly repetitive DNA sequences was isolated from EcoRI-digested genomic DNA of the blue-breasted quail (Coturnix chinensis, Galliformes), and characterized by filter hybridization and chromosome in situ hybridization. The repeated elements were divided into two types by nucleotide length and chromosomal distribution; the 578-bp element predominantly localized to microchromosomes and the 1,524-bp element localized to chromosomes 1 and 2. The 578-bp element represented tandem arrays and did not hybridize to genomic DNAs of other Galliformes species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and guinea fowl (Numida meleagris). On the other hand, the 1,524-bp element was not organized in tandem arrays, and did hybridize to the genomic DNAs of three other Galliformes species, suggesting that the 1,524-bp element is highly conserved in the Galliformes. The 578-bp element was composed of basic 20-bp internal repeats, and the consensus nucleotide sequence of the internal repeats had homologies to the 41-42 bp CNM repeat and the XHOI family repeat of chicken. Our data suggest that the microchromosome-specific highly repetitive sequences of the blue-breasted quail and chicken were derived from a common ancestral sequence, and that they are one of the major and essential components of chromosomal heterochromatin in Galliformes species.  相似文献   

2.
3.
4.
5.
We have cloned a Chinese hamster chromosome-specific repeated sequence (SatCH5). This satellite is composed of a 33-bp unit organized in two extended tandem arrays. It is localized at the centromere and at the short-arm subtelomere of chromosome 5. Altogether, SatCH5 covers about 1-2 Mb per diploid genome and is not present in other species, including the Syrian hamster and mouse. Since it is known in the Chinese hamster and numerous other vertebrate species that telomeric (TTAGGG)n repeats are localized at the centromeres of several chromosomes, we studied the localization of SatCH5 relative to (TTAGGG)n sequences. Using two-color fluorescence in situ hybridization on stretched chromosomes and on DNA fibers, we have shown that at the centromere of chromosome 5 SatCH5 and the (TTAGGG)n arrays are contiguous. SatCH5 is the first chromosome-specific repetitive sequence located at both the pericentromeric and subtelomeric regions of the same chromosome.  相似文献   

6.
Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes of chicken (Gallus gallus domesticus) and Japanese quail (Coturnix coturnix japonica). Fluorescence in situ hybridization (FISH) mapping on lampbrush chromosomes allowed us to distinguish closely located probes and revealed gene order more precisely. Our data extended the data earlier obtained using FISH to chicken and quail metaphase chromosomes 1–6 and Z. Extremely low levels of inter- and intra-chromosomal rearrangements in the chicken and Japanese quail were demonstrated again. Moreover, we did not confirm the presence of a pericentric inversion in Japanese quail chromosome 4 as compared to chicken chromosome 4. Twelve BAC clones specific for chicken chromosome 4p and 4q showed the same order in quail as in chicken when FISH was performed on lampbrush chromosomes. The centromeres of chicken and quail chromosomes 4 seem to have formed independently after centric fusion of ancestral chromosome 4 and a microchromosome.  相似文献   

7.
8.
The mitotic and lampbrush chromosomes of the domestic fowl and Japanese quail were analysed by fluorochrome staining technique. The lampbrush chromosomes of both the subjects displayed a typical "loop-chromomere" structure. Three distinct kinds of loops were distinguished in Gallus g. domesticus--normal, telomeric bows, and lumps. The former are distributed along the whole chromosome length. The latter and the bows were observed in subtelomeric and telomeric regions. By DNA/RNA specific acridine orange staining it was shown that each loop (especially, "lumpy" loops) contained a rich RNP matrix. A comparative analysis of the chromomycin A3/distamycin A banding pattern of mitotic and lampbrush chromosomes shows that the telomeric "bows" and "lumps" are special loops developed in telomeric heterochromatic bands. In Coturnix c. japonica, the CMA/DA-positive bands were not observed in telomeres of mitotic macrochromosomes, except a smallest band in the 2p-arm telomere. The absence of telomeric heterochromatic bands which can be visualized in the quail mitotic chromosomes coincides with the absence of "bow"-like loops. Only small lump-like structures were seen in some telomeres of macroautosomes. The biological significance of loop formation and RNA synthesis in heterochromatic band loops in growing oocytes is briefly discussed.  相似文献   

9.
A novel satellite DNA sequence of Japanese quail (Coturnix coturnix japonica) was isolated from genomic DNA digested with restriction endonuclease, Bg/II. Sequence analysis of three different-size clones revealed the presence of a tandem array of a GC-rich 41 bp repeated element. This sequence was localized by fluorescence in situ hybridization (FISH) primarily to microchromosomes of Japanese quail (2n = 78); approximately 50 of the 66 microchromosomes showed positive signals, although hybridization signals were also detected on chromosomes 4 and W. This satellite DNA did not cross-hybridize with genomic DNA of chicken (Gallus gallus) and Chinese painted quail (Excalfactoria chinensis) under moderately stringent conditions, suggesting that this class of repetitive DNA sequences was species specific and fairly divergent in Galliformes species.  相似文献   

10.
11.
Accumulation of total RNA and poly(A+)RNA was determined in the oocytes of Japanese quail (Coturnix coturnix japonica) during oogenesis, by a standard spectrophotometric method, after RNA extraction. Intensive RNA accumulation was observed in the oocytes 0.25-2.0 mm in diameter (correlated with the presence of lampbrush chromosomes), followed by a plateau in 2.0-3.0 mm oocytes (correlated with the condensation of lampbrush chromosomes). Resumption of the RNA accumulation in the 3.0-5.0 mm oocytes is interpreted as a result of external RNA delivery by the granulosa cells. Most of the RNA (approximately 3/4, 3-4 micrograms) contained in the ovulated oocyte was found under the vitelline membrane surrounding the yolk. This RNA has been designated as 'extraembryonic RNA', as it is located outside the germinal disc region where the embryo is formed. The extraembryonic RNA is rapidly degraded within 24 h, from ovulation until oviposition, during egg passage through the oviduct, while the RNA present in a germinal disc (approximately 1.1 micrograms) is stable. In bird oocytes the presence of two, territorially separated pools of RNA has been postulated: one contained in a germinal disc and needed for early embryo development, and the second present in the cytoplasmic layer around the yolk supporting oocyte growth and development during oogenesis.  相似文献   

12.
13.
14.
15.
Rodionov AV  Chechik MS 《Genetika》2002,38(9):1246-1251
Cytological maps of lampbrush macrobivalents of the Japanese quail (Coturnix coturnix japonica) were constructed. Investigation of chiasmata allowed determination of the meiotic frequency of reciprocal genetic recombination (crossing over) in Japanese quail females. The total chiasma number in bivalents of Japanese quail oocyte nuclei was determined to be 53-58. Macrobivalents 1-5 and Z of the Japanese quail had on average 3.3 chiasmata per bivalent, and microbivalents, 1.0-1.1 chiasmata per bivalent. The chiasmata (crossover) frequency in Japanese quail females was lower than in chicks. In macrochromosomes of Japanese quail females, one crossover occurred per 43.9 Mb, and in chicken, per 30.0 Mb. Judging from chiasma frequency, the genetic length of the Japanese quail genome is likely to be 2650-2900 cM. Crossover frequency in the species was 0.023 per Mb in macrobivalents and 0.07-0.08 Mb in microbivalents and for the total genome, 0.041 crossovers per Mb. The genetic length of one Mb (theta) in female Japanese quails was 1.14 cM in macrochromosomes, 3.60-4.12 cM in microchromosomes, and about 1.96-2.15 cM averaged over the genome.  相似文献   

16.
17.
Chiasmata in diplotene bivalents are located at the points of physical exchange (crossing-over) between homologous chromosomes. We have studied chiasma distribution within chicken lampbrush chromosome 1 to estimate the crossing-over frequency between chromosome landmarks. The position of the centromere and chromosome region 1q3.3-1q3.6 on lampbrush chromosome 1 were determined by comparative physical mapping of the TTAGGG repeats in the chicken mitotic and lampbrush chromosomes. The comparison of the chiasma (=crossing over)-based genetic distances on chicken chromosome 1 with the genetic linkage map obtained in genetic experiments showed that current genetic distances estimated by the high-resolution genetic mapping of the East Lansing, Compton, and Wageningen chicken reference populations are 1.2-1.9 times longer than those based on chiasma counts. Conceivable reasons for this discrepancy are discussed.  相似文献   

18.
19.
Cytological map of lampbrush macrobivalents of the Japanese quail (Coturnix coturnix japonica) were constructed. Investigation of chiasmata allowed to estimate the frequency of reciprocal genetic recombination (crossing over) in Japanese quail female meiosis. The total chiasma number in bivalents of Japanese quail oocyte nuclei was determined to be 53–58. Macrobivalents 1–5 and Z of the Japanese quail had on average 3.3 chiasmata per bivalent, and microbivalents, 1.0–1.1 chiasmata per bivalent. The chiasmata (crossover) frequency in Japanese quail females was lower than in chicken. In macrochromosomes of Japanese quail females, one crossover occurred per 43.9 Mb, and in chicken, per 30.0 Mb. Judging from chiasma frequency, the genetic length of the Japanese quail genome is likely to be 2650–2900 cM. Crossover frequency in the species was 0.023 per Mb in macrobivalents and 0.07–0.08 Mb in microbivalents and for the total genome, 0.041 crossing over per Mb. The genetic length of one Mb (recombination rate ) in female Japanese quails was 1.14 cM in macrochromosomes, 3.60–4.12 cM in microchromosomes, and about 1.96–2.15 cM averaged over the genome.  相似文献   

20.
The lampbrush chromosomes (LBC) were prepared from growing oocytes 0.75-1.50 mm in diameter. A map of 6 autosomes and the ZW sex bivalents is presented. Several types of landmarks were noticed: lumpy loops (LL), telomeric bow-like loops (TBL), some large loops in interstitial regions (marker loops--ML). Supposedly, the centromeres of LBC in the chicken are at one of the axial bars bearing no loops. The landmarks PBL and DBL mark the proximal and distal boundaries of bars. LBC-A (probably, chromosome 1 of the chicken karyotype) is about 185 microns. There are 7.3 +/- 0.2 chiasmata. Chiasmata are distributed at quasi-random. In LBC-A one chiasma is localized in a telomere, as a rule. Coordinates of 13 of the 14 different landmarks in LBC-A have been estimated. LBC-B (probably, chromosome 2) is about 151 microns, there are 5.50 +/- 0.23 chiasmata. The LBC-B may be identified by LL-21 and LL-22. LBC-C (probably, chromosome 3) is 128 microns; there are 4.70 +/- 0.18 chiasmata. The chromosome can be identified by characteristic loops LL-31, an unlooped chromomere bar near the telomere (T-32), a characteristic distribution of normal loops along LBC-C: about one half of this LBC bears large loops, and the other one--small loops. LBC-D (chromosome 4?) is 107 microns; there are 3.80 +/- 0.31 chiasmata. Double-loop bridges appear frequently near ML-41. LBC-E (chromosome 5?) is about 72 microns with 2.50 +/- 0.28 chiasmata. There are characteristic TBL loops with abundant RNP material thus being like LL-loops. LBC-F (chromosome 8?) is about 36.5 microns; there are 2 chiasmata. This LBC can be identified by giant telomeric loops GML-F1 and by unlooped bar in the middle of LBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号