首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Differences in components of innate anti-viral immune responses may account for the contrast in susceptibility to Theiler's murine encephalomyelitis virus (TMEV) between SJL/J and B10.S mice. Herein, the expression of IL-12, interferon (IFN)-beta, Toll-like receptors 3 (TLR3), TLR7, and mitogen-activated protein (MAP)-kinases was evaluated in SJL/J and B10.S macrophages infected with TMEV. Twenty-four hours after infection, SJL/J macrophages exhibited higher levels of TMEV RNA, IL-12 p40, and TLR3 but lower levels of IL-12 p70 and the IL-12 p35 subunit compared with B10.S macrophages. Addition of exogenous IL-12 p70 or IFN-beta increased the resistance of SJL/J macrophages to TMEV infection. To assess MAP-kinases, macrophages were pretreated with the p38 MAP-kinase inhibitor SB203580 or extracellular signal-regulated kinases (ERK) MAP-kinase inhibitor U0126 before TMEV infection. U0126 reduced SJL/J but increased B10.S macrophage expression of IL-12 p40 and p70 in response to TMEV. U0126 decreased the IL-12 p35 response of SJL/J macrophages. To assess TLR7, SJL/J and B10.S macrophages were stimulated with loxoribine, a TLR7 ligand. Loxoribine induced more IL-12 p70 production and p35 expression in B10.S than SJL/J macrophages. U0126 increased loxoribine-induced expression of IL-12 p40 and IL-12 p70 in B10.S but not SJL/J macrophages. Thus, differences in production of IL-12 p70 due to expression of the p35 subunit and in activity of TLR7, as well as activation of factors downstream of ERK MAP-kinases likely underlie the disparity in innate immunity between SJL/J and B10.S macrophages to TMEV.  相似文献   

2.
TC Moore  KL Bush  L Cody  DM Brown  TM Petro 《Journal of virology》2012,86(19):10841-10851
During Theiler's murine encephalomyelitis virus (TMEV) infection of macrophages, it is thought that high interleukin-6 (IL-6) levels contribute to the demyelinating disease found in chronically infected SJL/J mice but absent in B10.S mice capable of clearing the infection. Therefore, IL-6 expression was measured in TMEV-susceptible SJL/J and TMEV-resistant B10.S macrophages during their infection with TMEV DA strain or responses to lipopolysaccharide (LPS) or poly(I · C). Unexpectedly, IL-6 production was greater in B10.S macrophages than SJL/J macrophages during the first 24 h after stimulation with TMEV, LPS, or poly(I · C). Further experiments showed that in B10.S, SJL/J, and RAW264.7 macrophage cells, IL-6 expression was dependent on extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and enhanced by exogenous IL-12. In SJL/J and RAW264.7 macrophages, exogenous IL-6 resulted in decreased TMEV replication, earlier activation of STAT1 and STAT3, production of nitric oxide, and earlier upregulation of several antiviral genes downstream of STAT1. However, neither inhibition of IL-6-induced nitric oxide nor knockdown of STAT1 diminished the early antiviral effect of exogenous IL-6. In addition, neutralization of endogenous IL-6 from SJL/J macrophages with Fab antibodies did not exacerbate early TMEV infection. Therefore, endogenous IL-6 expression after TMEV infection is dependent on ERK MAPK, enhanced by IL-12, but too slow to decrease viral replication during early infection. In contrast, exogenous IL-6 enhances macrophage control of TMEV infection through preemptive antiviral nitric oxide production and antiviral STAT1 activation. These results indicate that immediate-early production of IL-6 could protect macrophages from TMEV infection.  相似文献   

3.
We show that inactivating the beta(2)m gene increases the viral load of SJL/J mice persistently infected by Theiler's virus. Together with previous results, this shows that the characteristics of Tmevp1, a locus which controls the amount of viral RNA that persists in the central nervous system, are those of an H-2 class I gene.  相似文献   

4.
Theiler's murine encephalomyelitis virus infection of mice is an animal model for human demyelinating diseases. To further define the role of this virus in the disease process, we selected a virus variant resistant to neutralization by a monoclonal antibody to VP-1. This virus variant was then injected into SJL/J mice. Central nervous system tissue was compared between variant virus- and wild-type virus-infected mice. Within the brain, no large differences were observed between the two groups as to the distribution of inflammatory infiltrates around the injection site and the number of viral antigen-positive cells during the first weeks of the observation period. In contrast, in the spinal cord major differences were found between variant virus- and wild-type virus-infected mice regarding the number of inflammatory lesions, infected cells, and the size of the areas involved with time. By immunohistochemistry, equivalent numbers of infected cells could be found in the spinal cord 1 week postinfection (p.i.): however, after that time, the number of infected cells in the wild-type virus-infected mice continued to increase, whereas the virus-positive cells from the variant virus-infected mice gradually decreased. Thus, the number of viral antigen-containing cells peaked by 1 week p.i. in the variant virus-infected animals. Conversely, the number of infected cells in the spinal cords from mice inoculated with wild-type virus steadily increased until 8 weeks p.i. At this time (8 weeks p.i.), no more variant virus antigen-positive cells could be observed within the spinal cord. Plaque assay of central nervous system tissue confirmed these differences between the two groups observed by immunohistochemistry. No infectious variant virus could be isolated after 2 weeks p.i. from the brain and 4 weeks p.i. from the spinal cord, whereas infectious wild-type virus could be detected up to the end of the observation period (12 weeks p.i.). Virus which was isolated from variant virus-infected mice still retained the neutralization-resistant phenotype. These studies emphasize the important biological in vivo activity of Theiler's virus VP-1 in determining neurovirulence.  相似文献   

5.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(13):6577-6585
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains, such as SJL/J, and serves as a relevant infectious model for human multiple sclerosis. It has been previously suggested that susceptible SJL/J mice do not mount an efficient cytotoxic T-lymphocyte (CTL) response to the virus. In addition, genetic studies have shown that resistance to Theiler's virus-induced demyelinating disease is linked to the H-2D major histocompatibility complex class I locus, suggesting that a compromised CTL response may contribute to the susceptibility of SJL/J mice. Here we show that SJL/J mice do, in fact, generate a CD8(+) T-cell response in the CNS that is directed against one dominant (VP3(159-166)) and two subdominant (VP1(11-20) and VP3(173-181)) capsid protein epitopes. These virus-specific CD8(+) T cells produce gamma interferon (IFN-gamma) and lyse target cells in the presence of the epitope peptides, indicating that these CNS-infiltrating CD8(+) T cells are fully functional effector cells. Intracellular IFN-gamma staining analysis indicates that greater than 50% of CNS-infiltrating CD8(+) T cells are specific for these viral epitopes at 7 days postinfection. Therefore, the susceptibility of SJL/J mice is not due to the lack of an early functional Theiler's murine encephalomyelitis virus-specific CTL response. Interestingly, T-cell responses to all three epitopes are restricted by the H-2K(s) molecule, and this skewed class I restriction may be associated with susceptibility to demyelinating disease.  相似文献   

6.
Theiler's murine encephalomyelitis virus (TMEV) persists in the mouse central nervous system principally in macrophages, and infected macrophages in culture undergo apoptosis. We have detected abundant apoptotic cells in perivascular cuffs and inflammatory, demyelinating lesions of SJL mice chronically infected with TMEV. T cells comprised 74% of apoptotic cells, while 8% were macrophages, 0.6% were astrocytes, and approximately 17% remained unidentified. In situ hybridization revealed viral RNA in approximately 1% of apoptotic cells.  相似文献   

7.
E Cash  M Chamorro    M Brahic 《Journal of virology》1988,62(5):1824-1826
Theiler's virus, a murine picornavirus, causes a chronic neurological disease characterized by primary demyelination in SJL/J mice. The lesions are very reminiscent of those of multiple sclerosis. Theiler's virus persists in oligodendrocytes and to a lesser extent in astrocytes and macrophages throughout the disease. Viral RNA and capsid protein syntheses are minimal in these cells. This restriction could play a central role in the mechanism of virus persistence. By quantitating plus- and minus-strand RNAs in infected central nervous system cells, we showed that RNA replication was blocked at the level of minus-strand RNA synthesis.  相似文献   

8.
Mouse adenovirus type 1 (MAV-1) targets endothelial and monocyte/macrophage cells throughout the mouse. Depending on the strain of mouse and dose or strain of virus, infected mice may survive, become persistently infected, or die. We surveyed inbred mouse strains and found that for the majority tested the 50% lethal doses (LD(50)s) were >10(4.4) PFU. However, SJL/J mice were highly susceptible to MAV-1, with a mean LD(50) of 10(-0.32) PFU. Infected C3H/HeJ (resistant) and SJL/J (susceptible) mice showed only modest differences in histopathology. Susceptible mice had significantly higher viral loads in the brain and spleen at 8 days postinfection than resistant mice. Infection of primary macrophages or mouse embryo fibroblasts from SJL/J and C3H/HeJ mice gave equivalent yields of virus, suggesting that a receptor difference between strains is not responsible for the susceptibility difference. When C3H/HeJ mice were subjected to sublethal doses of gamma irradiation, they became susceptible to MAV-1, with an LD(50) like that of SJL/J mice. Antiviral immunoglobulin G (IgG) levels were measured in susceptible and resistant mice infected by an early region 1A null mutant virus that is less virulent that wild-type virus. The antiviral IgG levels were high and similar in the two strains of mice. Taken together, these results suggest that immune response differences may in part account for differences in susceptibility to MAV-1 infection.  相似文献   

9.
TGF-beta 2 is a potent immunoregulatory mediator that influences B cell, T cell, and macrophage function. To test whether this cytokine alters pathology in a model of virus-induced demyelinating disease, we treated SJL/J mice with TGF-beta 2 either before or after infection with Theiler's murine encephalomyelitis virus. Treatment continued three times weekly through day 35 postinfection. TGF-beta 2 administration resulted in significantly smaller lesions and fewer virus Ag-positive cells in the spinal cords of infected SJL/J mice. Mice treated with TGF-beta 2 had similar levels of virus-specific IgG as infected, control-treated mice. TGF-beta 2 administration significantly increased the level of non-virus-specific activated CTLs, but had no effect on virus-specific CTLs. TUNEL revealed a decrease in the number of apoptotic nuclei in the spinal cord white matter of mice treated in vivo with TGF-beta 2. Immunostaining with an Ab to F4/80 revealed that TGF-beta 2-treated mice had significantly fewer F4/80-positive cells in the white matter of the spinal cord as compared with infected control-treated mice. These data suggest that TGF-beta 2 may control virus-induced demyelination via an immunomodulatory mechanism that reduces macrophage infiltration.  相似文献   

10.
H S Baek  J W Yoon 《Journal of virology》1990,64(12):5708-5715
Pancreatic islets from SJL/J mice infected with the D variant of encephalomyocarditis virus (EMC-D virus) showed lymphocytic infiltration with moderate to severe destruction of beta cells. Immunohistochemical staining of the islet sections with several monoclonal antibodies, anti-Mac-1, anti-Mac-2, and F4/80 for macrophages, anti-L3T4 for helper/inducer T cells, and anti-Lyt2 for cytotoxic/suppressor T cells revealed that the major population of infiltrating cells at the early stage of viral infection was Mac-2-positive macrophages. In contrast, macrophages detected by anti-Mac-1 and F4/80 monoclonal antibodies were not found at the early stage of viral infection but were found at intermediate and late stages of viral infection. Helper/inducer T cells and cytotoxic/suppressor T cells also infiltrated the islets at intermediate and late stages of viral infection. Short-term treatment of mice with silica prior to viral infection resulted in an enhancement of beta-cell destruction, leading to the development of diabetes. In contrast, long-term treatment of mice with silica resulted in complete prevention of diabetes caused by a low dose of viral infection and a significant decrease in the incidence of diabetes caused by an intermediate or high dose of viral infection. Furthermore, depletion of macrophages by a specific monoclonal antibody (anti-Mac-2) resulted in a much greater decrease in the incidence of diabetes caused by an intermediate dose of viral infection. However, suppression of helper/inducer T cells and cytotoxic/suppressor T cells, by anti-L3T4 and anti-Lyt2 antibodies, respectively, did not alter the incidence of diabetes. On the basis of these data, it is concluded that macrophages, particularly Mac-2-positive macrophages, play a crucial role in the process of pancreatic beta-cell destruction at the early stage of encephalomyocarditis D virus infection in SJL/J mice.  相似文献   

11.
Administration of neutralizing monoclonal antibody to gamma interferon increased Theiler's virus-induced demyelination and virus antigen persistence in the spinal cord in susceptible SJL/J mice and completely abrogated resistance such that all C57BL/10SNJ mice developed demyelination. These experiments support the hypothesis that gamma interferon is critically important for resistance to Theiler's virus-induced disease but is not required for myelin destruction.  相似文献   

12.
Theiler's virus infection in the central nervous system (CNS) induces a demyelinating disease very similar to human multiple sclerosis. We have assessed cytokine gene activation upon Theiler's murine encephalomyelitis virus (TMEV) infection and potential mechanisms in order to delineate the early events in viral infection that lead to immune-mediated demyelinating disease. Infection of SJL/J primary astrocyte cultures induces selective proinflammatory cytokine genes (interleukin-12p40 [IL-12p40], IL-1, IL-6, tumor necrosis factor alpha, and beta interferon [IFN-beta]) important in the innate immune response to infection. We find that TMEV-induced cytokine gene expression is mediated by the NF-kappaB pathway based on the early nuclear NF-kappaB translocation and suppression of cytokine activation in the presence of specific inhibitors of the NF-kappaB pathway. Further studies show this to be partly independent of dsRNA-dependent protein kinase (PKR) and IFN-alpha/beta pathways. Altogether, these results demonstrate that infection of astrocytes and other CNS-resident cells by TMEV provides the early NF-kappaB-mediated signals that directly activate various proinflammatory cytokine genes involved in the initiation and amplification of inflammatory responses in the CNS known to be critical for the development of immune-mediated demyelination.  相似文献   

13.
C P Rossi  E Cash  C Aubert    A Coutinho 《Journal of virology》1991,65(7):3895-3899
Theiler's virus, a murine picornavirus, persists in the central nervous system of susceptible strains of mice, causing chronic inflammation and demyelination in the white matter of the spinal cord. Resistant strains, however, clear the virus and do not develop late disease. In this study, we compared the characteristics of T and B lymphocytes in C57BL/6 (resistant) and SJL/J (susceptible) mice 1 week after intracerebral infection. We detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 mice (but not in those of SJL/J mice), which correlated with higher levels of serum IgM antiviral antibodies. The role of the humoral response in virus clearance and resistance was demonstrated by a marked decrease in the number of infected spinal cord cells in SJL/J mice after passive transfer of serum from infected C57BL/6 donors. The B-cell response was found to be partly T cell independent. These results suggest an important role of the early humoral immune response in resistance to Theiler's virus-induced disease.  相似文献   

14.
Theiler's murine encephalomyelitis virus (TMEV) causes a demyelinating disease in infected mice which has similarities to multiple sclerosis. Spleen cells from TMEV-infected SJL/J mice stimulated with antigen-presenting cells infected with TMEV resulted in a population of autoreactive CD8+ cytotoxic T cells that kill uninfected syngeneic cells. We established CD8+ T cell clones that could kill both TMEV-infected and uninfected syngeneic targets, although infected target cells were killed more efficiently. The CD8+ T-cell clones produced gamma interferon when incubated with either infected or uninfected syngeneic target cells. Intracerebral injection of the clones into na?ve mice induced degeneration, not only in the brain, but also in the spinal cord. This suggests that CD8+ Tc1 cells could play a pathogenic role in central nervous system inflammation.  相似文献   

15.
16.
Theiler's murine encephalomyelitis virus (TMEV) produces a persistent central nervous system infection and chronic, inflammatory demyelinating disease in susceptible mice. TMEV antigen(s) and RNA genome have been detected in astrocytes, oligodendrocytes, and macrophages during persistence. Whether there is a predominant cell type in which TMEV persists has not been resolved. Since TMEV-induced demyelinating lesions are infiltrated with macrophages and a number of other persistent viruses show near-exclusive tropism for these phagocytic cells, we used two-color immunofluorescent staining with conventional and confocal microscopy to colocalize TMEV to cells that stain with monoclonal antibodies (MOMA-2) [unknown antigen], Mac-1 [CD11b], FA-11 [CD66], and 2F8 [scavenger receptor]) to macrophages in BeAn-infected SJL mice. A predominant virus antigen burden within macrophages infiltrating demyelinating lesions was seen. A dichotomy of cells staining for virus antigen(s) was found with infected cells containing either a large or small virus antigen load. Ninety percent of cells with a large virus antigen load were large phagocytes (20 to 50 microns) that were readily detected at low power (5x objective). Cells with smaller amounts of virus antigen(s) turned out to be either these same large phagocytic cells or much smaller cells, approximately equal to 10 microns in diameter. Forty percent of cells with a small virus antigen load were macrophages. The unidentified approximately equal to 10-microns cells that are virus antigen positive and macrophage negative in this study could still be macrophages, or they may be oligodendrocytes. The fact that virus was detected in the cytoplasm and not phagolysosomes of macrophages and the sheer mass of fluorescently stained virus proteins in some macrophages suggest that TMEV persists in these phagocytic cells by active virus replication.  相似文献   

17.
18.
The pathological mechanisms that cause central nervous system (CNS) dysfunction in most neurological diseases are not well established. Theiler's murine encephalomyelitis virus (TMEV) is known to interact with cells of the CNS and its intracerebral inoculation to susceptible mice strains causes neurological disorders resembling multiple sclerosis (MS). In this study, we reported that primary astrocyte cultures from SJL/J susceptible mice when infected with TMEV released important amounts of nitrites (NO2-) to the culture medium, as measured in the supernatants 24 hours after infection. In addition, we observed an increment in the production of tumour necrosis factor alpha (TNF-alpha) by susceptible SJL/J strain derived astrocytes infected with TMEV. The treatment with the thiolic antioxidant N-acetyl-cysteine partially suppressed the virus-stimulated production of nitric oxide and TNF-alpha, in a dose response fashion. These results indicate that during viral infection astrocytes are an important cellular source of nitric oxide and TNF-alpha, substances which play important roles during CNS inflammatory events. The effects of the antioxidant N-acetyl-cysteine, modulating the production of the above compounds by TMEV-infected astrocytes may be a significant factor in preventing CNS demyelination.  相似文献   

19.
After infection with 10(3) plaque-forming units of mouse hepatitis virus strain 3 (MHV-3) in vivo, peripheral blood mononuclear cells and splenic cells expressed procoagulant activity (PCA) in a pattern directly correlating with susceptibility to disease. Mononuclear cells from BALB/cJ mice, a strain which is fully susceptible to MHV-3, expressed a greater than 500-fold increase in PCA. PCA was first detected within 12 hr of infection; prior to histologic evidence of disease and viral replication, it reached maximal levels 48 hr post-infection (p.i.) and persisted until the death of the animals 5 to 7 days p.i. Mononuclear cells from C3HeB/FeJ mice expressed a significant but lesser titer of PCA, with elevated PCA persisting throughout the chronically infected state until death of the animals 4 to 6 mo p.i. Basal levels of PCA were detected in mononuclear cells from fully resistant A/J mice despite the presence of large amounts of virus in livers, spleens, and sera from these animals. When mononuclear cells expressing high PCA were subfractionated, monocytes were found to be the cellular source of greater than 96% of the PCA activity. Increased plasminogen activator activity was found in monocytes from resistant A/J mice at the time when PCA was markedly elevated in BALB/cJ and C3HeB/FeJ mice. This activity persisted for 5 to 7 days p.i., but was undetectable 10 days p.i. at a time when the mice had cleared the virus from their blood streams. These observations suggest that monocyte PCA may be important in the pathogenesis of MHV-3 disease, whereas the production of monocyte plasminogen activators may contribute to resistance of A/J mice to MHV-3-induced liver disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号