首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Extracellular matrix material (ECM) present during early lens morphogenesis was analyzed histochemically in normal CFW mice and mutant strain aphakia by the Alcian blue 8GX, pH 2.5, Alcian blue 8GX, pH 2.5/periodic acid-Schiff combined, high-iron diamine, and van Gieson methods. At lens placode formation, the optic vesicle basal lamina in both strains was higher in sulfated glycosaminoglycan content than was the ectodermal basal lamina. In the aphakia strain, ECM components were observed intercellularly in the presumptive neural retina and lens rudiment of some specimens. This observation was peculiar to the aphakia strain. At the lens cup stage (10.5 days), the interface ECM became less uniformly dense in the CFW strain, resulting in the formation of a fibrillar structure in the widening interspace area. In contrast, the interface ECM in the mutant strain stained solidly and continuously for acidic materials, particularly sulfated glycosaminoglycans, for a full 2 days longer than in the normal strain. The optic cup and lens rudiment remained closely apposed and intercellular ECM components were observed in these tissues in most mutant specimens throughout these stages. The exact mechanism resulting in these intercellular deposits is unknown, although it is possible that they are either pulled along on the cell surface away from the interface ECM during cell shape changes related to the cell cycle or that they are secreted abnormally due to some disturbed cellular polarity. It is unclear at this time if these abnormalities of the ECM in the aphakia strain play a role in the pathogenesis of the multiple eye anomalies, or if they are a secondary effect of the gene mutation.  相似文献   

2.
Extracellular matrix material (ECM) present during mouse lens morphogenesis was studied histologically by the periodic acid-Schiff, Alcian blue 8GX, pH 2.5, high iron diamine, and Van Gieson methods, and enzymatically with bovine testicular hyaluronidase, Streptomyces hyaluronidase, malt diastase, and collagenase. The basal lamina of the optic vesicle prior to lens placode formation was found to be higher in glycosaminoglycan (GAG) content than was the ectodermal basal lamina. Upon apposition of the optic vesicle and presumptive lens ectoderm, the ECM plus basal laminae appeared as the equivalent of adding both optic vesicle-associated and ectodermal-associated basal lamina. The proposal is made that the initial triggering mechanism of lens morphogenesis consists of a cross-linking and polymerization of optic vesicle-associated GAG to ectodermal-associated glycoproteins resulting in a firm attachment between the structures. Basal lamina associated with the presumptive pigmented retina and also the more ventral part of the interface matrix were found to change from predominantly GAG in early stages to collagen deposits in more advanced stages, temporally coinciding with the appearance of differentiative markers in each structure. This pattern of GAG turnover and replacement by collagen during the course of development is also seen in mouse salivary gland morphogenesis (M. R. Bernfield, S. D. Banerjee, and R. H. Cohn (1972). J. Cell Biol. 52, 674-686.).  相似文献   

3.
Trisomic animals produced from mice doubly heterozygous for Robertsonian translocation chromosomes [Rb(1.3)/Rb(1.10)]consistently show eye defects (e.g., aphakia, microphakia, and retention of lens stalk). To determine if changes in distribution or composition of extracellular matrix material may be a factor in development of these defects, eye structures of trisomy (ts) 1 embryos and normal littermates were studied histochemically using the following methods: Alcian blue 8GX, pH 2.5; periodic acid-Schiff (PAS), Alcian blue/PAS combined; high-iron diamine (HID), and HID/Alcian blue combined. Eye development was divided into stages to account for the known delay in ts 1 mouse development. Differences were found in staining patterns as early as stage 1. In later stages, the most consistent difference was an increased period of contact between lens and optic cup due to retardation of interface matrix dissolution between these rudiments in ts 1 embryos. Eyes in which this occurred had abnormally shaped lenses. Overall, the ts 1 optic cup appeared to have fewer staining abnormalities and dysmorphology than did the lens or interface matrix. Triplication of a chromosome may indirectly alter temporal and spatial organization of extracellular matrix through action on cells responsible for the production of this material. Possible mechanisms of action are discussed.  相似文献   

4.
The histological and cytological basis of trypan blue-induced ocular defects were studied using scanning and transmission electron microscopy. Microphthalmic and anophthalmic eyes of 16-day rat fetuses were utilized from dams exposed to a teratogenic dose of trypan blue. Retinal and lenticular anlagen were specifically examined for architectural and cellular changes. Nearly all severely abnormal eyes showed no evidence of retina development: Of 41 such eyes, only two retinal rudiments were observed. Those eyes with mild microphthalmia always demonstrated retinae although architectural changes were present. In every abnormal eye, some degree of lenticular morphogenesis was always present. Lenses were small, displaced in the eye field, and arrested at the lens vesicle stage. Lens cells were markedly undifferentiated and thus lacked most of the cytological features normally present at this developmental stage. Neither retinal nor lenticular rudiments were necrotic despite major architectural and cytological disturbances. The data offer three conclusions: First, the absence of necrosis suggests that trypan blue causes developmental arrest in this eye model; second, absence of retinae is most likely due to primary failure of optic vesicle development; third, lack of lens differentiation is attributed to absence of the retina, the primary lens inducer.  相似文献   

5.
The etiology of the eye defects in myelencephalic blebs (my) mutant mice has been poorly understood for almost seventy years. Embryos from 9 to 14 1/2 days of gestation were subjected to Alcian blue 8GX staining for acidic glycosaminoglycan deposition in basement membrane structures of the developing eye in my stock and control specimens. In addition 12 day embryos were subjected to avidinbiotin-peroxidase labelling for laminin. At 9-9 1/2 days of gestation more Alcian blue positive extracellular matrix was found in the region between the optic vesicle and the overlying putative lens ectoderm in the my stock embryos. By 12 days, there was an irregular and lesser amount of deposition of glycosaminoglycans in the len's capsule and in the "inner limiting membrane" of the presumptive neural retina; however, the deposition of laminin appeared to be greater in the inner limiting membrane of the my eye. By 14 days, the damage to the eye in the my embryos can be quite extensive, and the deposition of glycosaminoglycans was very meager in this situation. It appears that irregular deposition of glycosaminoglycans in the extracellular matrix and possible increase in the amount of laminin in basement structures in my embryos indicate disruption of the normal histochemistry involved in the development of the eye. Altered histochemistry may in turn indicate changes in permeability between cells of the developing tissues which result in the blebbing.  相似文献   

6.
The neural basal lamina in hindbrain regions of exencephalic loop-tail (Lp/Lp) mice and of their normal (+/+; Lp/+) littermates was analyzed histochemically at the electron microscopic level by means of enzyme digestion and alcian blue staining with critical electrolyte concentrations (CEC) of MgCl2. At 9 days of gestation, the normal and abnormal embryos showed a similar pattern of alcian blue staining with a CEC of 0.00 M or 0.05 M MgCl2. However, with a CEC of 0.30 M MgCl2, the basal lamina in the abnormals stained more prominently, particularly the lamina rara externa, suggesting the presence of more sulfated glycosaminoglycans (GAG) in the abnormals. Moreover, predigestion of the tissues with Streptomyces hyaluronidase, which removes hyaluronic acid (HA), indicated that the abnormal basal lamina contained relatively less HA than in the normal embryos. By 10 days of gestation the normal basal lamina contained relatively more sulfated GAG and less HA and was thus more similar in appearance to that in the abnormal embryos. This apparently premature shift from HA predominance to sulfated GAG predominance in the abnormal basal lamina may be of significance in the etiology of dysraphism in this mutant.  相似文献   

7.
Golgi staining of neuronal cell types in the optic lobe rudiments of adult eyeless flies of the sine oculis (so) mutant of Drosophila melanogaster reveals partial independence of optic lobe's development from compound eye formation. (1) Differentiation and maintenance of many neuronal cell types of medulla and lobular complex do not require innervation of the medulla from the retina and the lamina. Neurons derived from the outer and inner optic anlage have been found in adult eyeless flies. (2) The rudiments of ipsilateral medulla, lobula, and lobular plate are isotopically connected with each other. (3) Stratification of the lobular complex is retained. (4) Equivalent parts of the dorsal lobulae are connected by heterolateral small field neurons. (5) The shapes of many tangential neurons of the medulla show sprouting and compensatory innervation of the lobular complex. The basic results reported here for eyeless flies have many parallels in what is known about anophthalmic mice.  相似文献   

8.
The formation of the vertebrate optic cup is a morphogenetic event initiated after the optic vesicle contacts the overlying surface/pre-lens ectoderm. Placodes form in both the optic neuroepithelium and lens ectoderm. Subsequently, both placodes invaginate to form the definitive optic cup and lens, respectively. We examined the role of the lens tissue in inducing and/or maintaining optic cup invagination in ovo. Lens tissue was surgically removed at various stages of development, from pre-lens ectoderm stages to invaginating lens placode. Removal of the pre-lens ectoderm resulted in persistent optic vesicles that initiated neural retinal differentiation but failed to invaginate. In striking contrast, ablation of the lens placode gave rise to optic vesicles that underwent invagination and formed the optic cup. The results suggest that: (1) the optic vesicle neuroepithelium requires a temporally specific association with pre-lens ectoderm in order to undergo optic cup morphogenesis; and (2) the optic cup can form in the absence of lens formation. If ectopic BMP is added, a neural retina does not develop and optic cup morphogenesis fails, although lens formation appears normal. FGF-induced neural retina differentiation in the absence of the pre-lens ectoderm is not sufficient to create an optic cup. We hypothesize the presence of a signal coming from the pre-lens ectoderm that induces the optic vesicle to form an optic cup.  相似文献   

9.
Studies on an anophthalmic strain of mice. VI. Lens and cup interaction   总被引:1,自引:0,他引:1  
In the embryology of the eye region in the anophthalmic strain of mice (ZRDCTCh), development proceeds normally until Day 10 (26 somites). At this time a lens is induced, but it is smaller in size and may be improperly centered in the optic cup. Where the lens is centered in relation to the optic cup determines whether microphthalmia or anophthalmia will occur. Also, we observed that optic cup formation is different in normal control strains.  相似文献   

10.
Abstract. A certain percentage of congenitally anophthalmic mouse embryos have the ability to generate small lens vesicles that have previously been shown to produce alpha crystallin at 13-day gestation. Further immunohistological analysis of 13- and 15-day-gestation anophthalmia embryos indicates that beta crystallin is present in those 13-day embryos which have lens vesicles with lens-fiber formation. Also, 15-day embryos with lenses demonstrating fiber elongation can produce both beta and gamma crystallins. The conclusion is drawn that the genetic potential to produce at least three characteristic biochemical markers of normal lens differentiation is present in the anophthalmia mutant. The spatial distribution patterns of the crystallins in normal and anophthalmia embryos were similar. However, there appeared to be a transposition in the temporal appearance of beta and gamma crystallins in the anophthalmia mutant. Optic cups and associated lenses in 15-day anophthalmia specimens were much smaller than those in controls. The optic and lens rudiments in these anophthalmia embryos were fairly proportional in size, which indicates that some degree of allometric growth compensation had occurred during the course of development. This ability for differential growth compensation in the mouse eye appears to be restricted to the predifferentiative stages of eye formation.  相似文献   

11.
12.
Aso S  Baba R  Noda S  Ikuno S  Fujita M 《Teratology》2000,61(4):262-272
Adult homozygous lap mice show various eye abnormalities such as aphakia, retinal disorganization, and dysplasia of the cornea and anterior chamber. In the fetal eye of a homozygous lap mouse, the lens placode appears to develop normally. However, the lens vesicle develops abnormally to form a mass of cells without a cavity, and the mass vanishes soon afterward. Apoptotic cell death is associated with the disappearance of the lens anlage. We examined the basement membranes of the lens anlage of this mutant by immunohistochemical methods under light microscopy using antibodies against basement membrane components of the lens anlage, type IV collagen, fibronectin, laminin, heparan sulfate proteoglycan, and entactin and by transmission electron microscopy. Immunohistochemistry showed the distribution and intensity of antibody binding to the lens anlage to be almost the same for each these antibodies regardless of the stage of gestation or whether the anlagen were from normal BALB/c or lap mice. Thus, positive continuous reactions were observed around the exterior region of the lens anlage from day 10 of gestation for type IV collagen, fibronectin, laminin, heparan sulfate proteoglycan antibodies, and at least from day 11of gestation for entactin antibody. The basement membrane lamina densa of both normal and lap mice was shown by electron microscopy to be discontinuous at days 10 and 10.5 of gestation. However, by day 11 the lamina densa was continuous in the lens anlagen of normal mice but still discontinuous in the lap mice. By day 12 of gestation, the lamina densa had thickened markedly in normal mice, whereas in lap mice it remained discontinuous and its thinness indicated hypoplasia. These results indicate that, while all basement components examined are produced and deposited in the normal region of the lens anlage in the lap mouse, the basement membrane is, for some reason, imperfectly formed. The time at which hypoplasia of the basement membrane was observed in this mutant coincided with the stage during which apoptosis in the lens anlage occurred. This result may indicate a possibility of the relationship between the basement membrane and apoptosis in this mutant.  相似文献   

13.
The induction of the lens by the optic vesicle in amphibians is often cited as support for the view that a single inductive event can lead to determination in a multipotent tissue. This conclusion is based on transplantation experiments whose results indicate that many regions of embryonic ectoderm which would normally form epidermis can form a lens if brought into contact with the optic vesicle. Although additional evidence argues that during normal development other tissues, acting before the optic vesicle, also contribute to lens induction, it is still widely held, on the basis of these transplantation experiments, that the optic vesicle alone can elicit lens formation in ectoderm. While testing this conclusion by transplanting optic vesicles beneath ventral ectoderm in Xenopus laevis embryos, it became apparent that contamination of optic vesicles by presumptive lens ectoderm cells can generate lenses in these experiments, illustrating the need for adequate host and donor marking procedures. Since previous studies rarely used host and donor marking, it was not clear whether they actually demonstrated that the optic vesicle can induce lenses. Using careful host and donor marking procedures with horseradish peroxidase as a lineage tracer, we show that the optic vesicle cannot stimulate lens formation in neurula- or gastrula-stage ectoderm of Xenopus laevis. Since the general conclusion that the optic vesicle is sufficient for lens induction rests on studies in many organisms, we felt it was important to begin to test this conclusion in other amphibians as well. Similar experiments were therefore performed with Rana Palustris embryos, since it was in this organism that optic vesicle transplant studies had originally argued that this tissue alone can cause lens induction. Under conditions similar to those used in the original report, but with careful controls to assess the origin of lenses in transplants, we found that the optic vesicle alone cannot elicit lens formation. Our data lead us to propose that the optic vesicle in amphibians is not generally sufficient for lens induction. Instead, we argue that lens induction occurs by a multistep process in which an essential phase in lens determination occurs as a result of inductive interactions preceding contact of ectoderm with the optic vesicle.  相似文献   

14.
BACKGROUND: The most comprehensive evaluation of vertebrate skeletal development involves the use of Alizarin Red S dye to stain ossified bone and various other dyes to stain cartilage. The dye used most widely to stain fetal cartilage in rodents and rabbits is Alcian Blue 8GX. However, the global supply of this specific dye has been exhausted. Several forms of the dye marketed as Alcian Blue 8GX are now available, although they are not synthesized via the original 8GX manufacturing process. METHODS: One new Alcian Blue 8GX form and two Alcian Blue dye variants were evaluated in rats and rabbits using standard staining procedures. The staining quality of these dyes were evaluated relative to the original form of Alcian Blue 8GX based on cartilage uptake of the dye, clarity of the cartilaginous components, staining intensity of the dye, and overall readability of the specimens under stereomicroscopic evaluation. RESULTS: Staining with the newer form of Alcian Blue 8GX resulted in poor staining quality. The Alcian Blue-Pyridine variant performed well, although staining intensity was less than optimal. The Alcian Blue-Tetrakis variant provided staining characteristics that were most similar to the original form of Alcian Blue 8GX. CONCLUSIONS: Alcian Blue-Tetrakis was markedly better in its ability to stain fetal cartilage than the newer form of Alcian Blue 8GX.  相似文献   

15.
Partially deglycosylated chondroitin sulfate proteoglycan (CSPG) or peptide fragments obtained from CSPG are not readily detectable in gels by staining with Alcian blue 8GX or ammoniacal silver using the technique of Oakley et al. (B. Oakley, D. Kirsh, and N. Morris (1980) Anal. Biochem. 105, 361). Sequencial staining with both reagents allows visualization of intact CSPG or peptides derived from proteoglycans in polyacrylamide gels at protein concentrations as low as 2 ng/mm2, or glucuronic acid and galactosamine concentrations of 1 ng/mm2 or less. This method is significantly more sensitive and has broader applicability than that described by H. Min and M. Cowman (1986) Anal. Biochem. 155, 275) for staining glycosaminoglycan fragments in polyacrylamide gels.  相似文献   

16.
The mab-21 gene was first identified because of its requirement for ray identity specification in Caenorhabditis elegans. It is now known to constitute a family of genes that are highly conserved from vertebrates to invertebrates, and two homologs, Mab21l1 and Mab21l2, have been identified in many species. We describe the generation of Mab21l1-deficient mice with defects in eye and preputial gland formation. The mutant mouse eye has a rudimentary lens resulting from insufficient invagination of the lens placode caused by deficient proliferation. Chimera analyses suggest that the lens placode is affected in a cell-autonomous manner, although Mab21l1 is expressed in both the lens placode and the optic vesicle. The defects in lens placode development correlate with delayed and insufficient expression of Foxe3, which is also required for lens development, while Maf, Sox2, Six3 and PAX6 levels are not significantly affected. Significant reduction of Mab21l1 expression in the optic vesicle and overlying surface ectoderm in Sey homozygotes indicates that Mab21l1 expression in the developing eye is dependent upon the functions of Pax6 gene products. We conclude that Mab21l1 expression dependent on PAX6 is essential for lens placode growth and for formation of the lens vesicle; lack of Mab21l1 expression causes reduced expression of Foxe3 in a cell-autonomous manner.  相似文献   

17.
Changes in glycosaminoglycan (GAG) content and distribution are vital for joint development. However, their precise character has not been established. We have used immunohistochemistry (IHC) and "critical electrolyte" Alcian blue staining to assess such changes in developing chick and rabbit joints. IHC showed chondroitin sulfate labeling in chick epiphyseal cartilage but not in interzones. In contrast, prominent labeling for keratan sulfate (KS) was restricted to chick cartilage-interzone interfaces. In rabbit knees, KS labeling was also prominent at presumptive cavity borders, but weak in interzone and cartilage. Selective pre-digestion produced appropriate loss of label and undersulfated KS was undetectable. Quantification of Alcian blue staining by scanning and integrating microdensitometry showed prominent hyaluronan-like (HA-like) interzone staining, with chondroitin sulfate and weaker KS staining restricted to epiphyseal cartilage. Hyaluronidase decreased HA-like staining in the interzone. Surprisingly, keratanases also reduced HA-like but not sulfated GAG (sGAG-like) staining in the interzone. Chondroitinase ABC had little effect on HA-like staining but decreased sGAG staining in all regions. Rabbit joints also showed HA-like but not KS staining in the interzone and strong chondroitin sulfate-like staining in epiphyseal cartilage. Our findings show restricted KS distribution in the region close to the presumptive joint cavity of developing chick and rabbit joints. Alcian blue staining does not detect this moiety. Therefore, it appears that although histochemistry allows relatively insensitive quantitative assessment of GAGs, IHC increases these detection limits. This is particularly evident for KS, which exhibits immunolabeling patterns in joints from different species that is consistent with a conserved functional role in chondrogenesis.  相似文献   

18.
Localisation of laminin and fibronectin during rat lens morphogenesis   总被引:1,自引:0,他引:1  
Abstract. Immunofluorescence clearly localised laminin and fibronectin in the basement membranes of ocular epithelia through all stages of rat lens differentiation. Some fibronectin is also localised around the mesodermal cells associated with the epithelia. At 10 days of embryonic development, the presumptive lens ectoderm and optic veiscle are closely associated, and the "interspace" between the two tissues contains only a few mesodermal cells. Later, as the mesoderm is excluded and the lens palcode invaginates to form the lens pit, there is a marked increase in the concentration of both laminin and fibronectin in the interspace. At about 13 days, the interspace widens, and there is fluorescence for both glycoproteins in the basement membranes of the optic cup and lens vesicle; as the lens capsule thickens, the fluorescence for laminin increases in the latter. The unlabelled peroxidase anti-peroxidase (PAP) method shows that 'blebs' and 'blisters' of basement membranes, particularly from the optic vesicle, appear to give rise to cords of fibronectin- and laminin-positive material. These cords extend into the interspace and are associated with flocculent and fibrillar material. Therefore, the glycoproteins probably combine with other extracellular matrix (ECM) constituents, e.g. collagen, to form a network of fibrils in the interspace. This network must provide good adhesion between the lens placode and the optic vesicle so that invagination is co-ordinated to form the lens pit and the optic cup, respectively. It is suggested that, in addition to providing good adhesion between the tissues, this laminin- and fibronectin-rich ECM may stimulate the formation of basal extensions and cytoplasmic processes, particularly from the lens placode, and therefore, initiate the ectoderm to form lens placode.  相似文献   

19.
We investigated the ultrastructural distribution of sulfated glycosaminoglycans in the epithelial-mesenchymal interface of tooth germs by use of the high-iron diamine thiocarbohydrazide silver proteinate (HID-TCH-SP) staining and enzymatic digestion method. At an early stage in odontoblast differentiation, HID-TCH-SP stain deposits were sparsely distributed in the basement membrane and in the intercellular spaces. Subsequently, as formation of the initial predentin matrix began, HID-TCH-SP stain deposits were densely distributed in the interfibrillar spaces and the basement membrane. Testicular hyaluronidase digested most of those in the progenitor pre-dentin, whereas those in the region of basal lamina resisted enzymatic digestion. Testicular hyaluronidase-resistant HID-TCH-SP stain deposits were susceptible to heparitinase, indicating that the sulfated glycosaminoglycan in the basal lamina is heparan sulfate. Furthermore, the heparan sulfate tended to be regularly arranged at the sites of internal and external lamina densa. However, as progenitor pre-dentin matrix formation proceeded, the numbers of stain deposits temporarily increased and their distribution pattern became irregular, finally tending to disappear with the disruption of basal lamina.  相似文献   

20.
The lung rudiment, isolated from mid-gestation (11 day) mouse embryos, can undergo morphogenesis in organ culture. Observation of living rudiments, in culture, reveals both growth and ongoing bronchiolar branching activity. To detect proteoglycan (PG) biosynthesis, and deposition in the extracellular matrix, rudiments were metabolically labeled with radioactive sulfate, then fixed, embedded, sectioned and processed for autoradiography. The sulfated glycosaminoglycan (GAG) types, composing the carbohydrate component of the proteoglycans, were evaluated by selective GAG degradative approaches that showed chondroitin sulfate PG principally associated with the interstitial matrix, and heparan sulfate PG principally associated with the basement membrane. Experiments using the proteoglycan biosynthesis disrupter, beta-xyloside, suggest that when chondroitin sulfate PG deposition into the ECM is perturbed, branching morphogenesis is compromised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号