首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Selective acid-catalysed methanolysis of 2,3,2′,3′-tetra-O-benzyl-4,6:4′,6′-di-O-benzylidene-α,α-trehalose yielded the monobenzylidene derivative, which was converted into the 4,6-dimesylate. Selective nucleophilic displacement of the primary sulphonyloxy group then gave 2,3-di-O-benzyl-6-deoxy-6-fluoro-4-O-mesyl-α-d-glucopyranosyl 2,3-di-O-benzyl-4,6-O-benzylidene-α-d-glucopyranoside. Removal of the protecting groups then yielded 6-deoxy-6-fluoro-α,α-trehalose. In addition, 6-deoxy-6-fluoro-4-O-mesyl-α,α-trehalose and a derivative of 4-chloro-4,6-dideoxy-6-fluoro-α-d-galactopyranosyl α-d-glucopyranoside were also prepared from the same substrate. Iodide displacement of 2,3-di-O-benzyl-4,6-di-O-mesyl-α-d-glucopyranosyl 2,3-di-O-benzyl-4,6-di-O-mesyl-α-d-glucopyranoside afforded the 6-iodide and 6,6′-di-iodide in yields of 31 and 36%, respectively. Similarly, the 6-azide and 6,6′-diazide were isolated in yields of 17 and 21%, respectively.  相似文献   

2.
2-Amino-2,4-dideoxy-4-fluoro- and 2-amino-2,4,6-trideoxy-4, 6-difluoro-D-galactose, and 2-amino-2,4-dideoxy-4-fluoro- and 2-amino-4-deoxy-4, 4-difluoro-D-xylo-hexose were synthesized, as potential modifiers of tumor cell-surface glyco-conjugate, from benzyl 2-acetamido-3-O-benzyl-2-deoxy-4, 6-di-O-mesyl-alpha-D-glucopyranoside and benzyl 2-acetamido-3, 6-di-O-benzyl-2-deoxy-4-O-mesyl-alpha-D-glucopyranoside, which were converted into the corresponding 4,6-difluoro-2,4, 6-trideoxy and 2,4-dideoxy-4-fluoro derivatives. Benzyl 2-acetamido-2-deoxy-4-O-mesyl-alpha-D-galactopyranoside and benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-alpha-D-xylo-hexo-4-ulopyra noside were treated with diethylaminosulfur trifluoride to give 2-amino-2,4-dideoxy-4-fluoro-D-glucose and 2-amino-2,4-dideoxy-4, 4-di-fluoro-D-xylo-hexose derivatives, respectively, to give after deprotection the target compounds. Several of the peracetylated sugar derivatives inhibited L1210 tumor-cell growth in vitro at concentrations of 1-5 10(-5) M. The peracetylated derivative of 2-amino-2,4-dideoxy-4-fluoro-D-galactose inhibited protein and glycoconjugate biosynthesis, and also exhibited antitumor activity in mice with L1210 leukemia.  相似文献   

3.
Selective acetalation of α,α-trehalose with ethyl or methyl isopropenyl ether and toluene-p-sulphonic acid in N,N-dimethylformamide gave the 4,6-isopropylidene acetal as the major product, isolated as its hexa-acetate 1 (38%). The gluco-galacto analogue 6 of α,α-trehalose was synthesized from 1 by the sequence: hydrolysis of the isopropylidene group with trifluoroacetic acid, mesylation of the resulting diol, benzoate displacement, and saponification of the product. Deacetylation of 1 followed by benzylation and hydrolysis of the acetal group furnished a hexa-O-benzyl derivative 9. Tosylation of the primary hydroxyl group in 9, treatment of the product with tetrabutylammonium fluoride in acetonitrile, and subsequent catalytic hydrogenolysis of the benzyl groups gave 6-deoxy-6-fluoro-α,α-trehalose (12). Compounds 6 and 12 and 6-deoxy-6-iodo-α,α-trehalose are substrates for cockchafer trehalase, but have very low Vmax values.  相似文献   

4.
Treatment of methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4-tri-O-acetyl-alpha-D-mannopyranosyl)-alpha -D- mannopyranoside with N,N-diethylaminosulfur trifluoride (Et2NSF3), followed by O-deacetylation and catalytic hydrogenolysis, afforded methyl 2-O-(6-deoxy-6-fluoro-alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (8). Methyl 6-deoxy-6-fluoro-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (11) was similarly obtained from methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-alpha-D- mannopyranoside. 1,2,3,4-Tetra-O-acetyl-6-deoxy-6-fluoro-beta-D-mannopyranose (13), used for the synthesis of the 4-nitrophenyl analogs of 8 and 11, as well as their 3-O-linked isomers, was obtained by treatment of 1,2,3,4-tetra-O-acetyl-beta-D-mannopyranose with Et2NSF3. Treatment of 13 with 4-nitrophenol in the presence of tin(IV) chloride, followed by sequential O-deacetylation, isopropylidenation, acetylation, and cleavage of the acetal group, afforded 4-nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro-alpha-D-mannopyranoside (18). Treatment of 13 with HBr in glacial acetic acid furnished the 6-deoxy-6-fluoro bromide 19. Glycosylation of diol 18 with 20 gave 4-nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro-3-O- (21) and -2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (23) in the ratio of approximately 2:1, together with a small proportion of a branched trisaccharide. 4-Nitrophenyl 4,6-di-O-acetyl-alpha-D-mannopyranoside was similarly glycosylated with bromide 19 to give 4-nitrophenyl 4,6-di-O-acetyl-3-O- and -2-O-(2,3,4-tri- O-acetyl-6-deoxy-6-fluoro-alpha-D-mannopyranosyl)-alpha-D-mannopyranosid e. The various di- and tri-saccharides were O-deacetylated by Zemplén transesterification.  相似文献   

5.
7-O-[2,6-Dideoxy-2-fluoro-5-C-(trifluoromethyl)-alpha-L-talopyranosyl]- daunomycinone and -adriamycinone have been prepared by the coupling of 3,4-di-O-acetyl-2,6-dideoxy-2-fluoro-5-C-(trifluoromethyl)-alpha-L- talopyranosyl iodide with daunomycinone. The key steps in this synthesis are the regioselective fluorination of methyl alpha-D-lyxopyranoside to give the 4-deoxy-4-fluoro-beta-L-ribopyranoside and the C-trifluoromethylation of the aldehydo-L-ribose derivative to give the 1,1,1-trifluoro-5-monofluoro-L-altritol derivative. Antitumor activities of the synthetic products were compared with those for the 2'-deoxy-2'-fluoro and 2',6'-dideoxy-5'-C-trifluoromethyl analogs.  相似文献   

6.
The chemical synthesis of 1,2,4-tri-O-acetyl-3-deoxy-3-fluoro-5-thio-D-xylopyranose, 1,2,4,6-tetra-O-acetyl-3-deoxy-3-fluoro-5-thio-alpha-D-glucopyranose and their corresponding nucleosides of thymine is described. Treatment of 3-fluoro-5-S-acetyl-5-thio-D-xylofuranose, obtained by hydrolysis of the isopropylidene group of 3-fluoro-1,2-O-isopropylidene-5-S-acetyl-5-thio-D-xylofuranose, with methanolic ammonia and direct acetylation, led to triacetylated 3-deoxy-3-fluoro-5-thio-D-xylopyranose. Condensation of acetylated 3-fluoro-5-thio-D-xylopyranose with silylated thymine afforded the corresponding nucleoside. Selective benzoylation and direct methanesulfonylation of 3-fluoro-1,2-O-isopropylidene-alpha-D-glucofuranose gave the 6-O-benzoyl-5-O-methylsulfonyl derivative, which on treatment with sodium methoxide afforded the 5,6-anhydro derivative. Treatment of the latter with thiourea, followed by acetolysis, gave the 3-fluoro-5-S-acetyl-6-O-acetyl-1,2-O-isopropylidene-5-thio-alpha-D-glucofuranose. 3-fluoro-5-S-acetyl-6-O-acetyl-5-thio-D-glucofuranose, obtained after hydrolysis of 5-thiofuranose isopropylidene, was treated with ammonia in methanol and directly acetylated, giving tetraacetylated 3-deoxy-3-fluoro-5-thio-alpha-D-glucopyranose. Condensation of the latter with silylated thymine afforded the desired 3-deoxy-3-fluoro-5-thio-beta-D-glucopyranonucleoside analogue.  相似文献   

7.
Derivatives of (S)-2-fluoro-L-daunosamine and (S)-2-fluoro-D-ristosamine were synthesized, starting ultimately from 2-amino-2-deoxy-D-glucose which was converted, according to the literature, into methyl 2-benzamido-4, 6-O-benzylidene-2-deoxy-3-O-(methylsulfonyl)-alpha-D-glucopyranoside (2). Treatment of 2 with tetrabutylammonium fluoride gave a 63% yield of (known) methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro-alpha-D-altropyran oside (4), together with a 6% yield of its 2-benzamido-2,3-dideoxy-3-fluoro-alpha-D-gluco isomer. From 4, the corresponding 6-bromo-2,3,6-trideoxyglycoside 4-benzoate (6) was obtained by Hanessian-Hullar reaction. Dehydrobromination of 6, followed by catalytic hydrogenation of the resulting 5-enoside, and subsequent debenzoylation and N-trifluoroacetylation, afforded the fluorodaunosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-beta-L-galactopyranos ide. Reductive debromination of 6, followed by debenzoylation and N-trifluoroacetylation, gave the fluororistosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-alpha-D-altropyran oside. The 1H-n.m.r. spectra of the new aminofluoro sugars are discussed with respect to the effects of neighboring amino and acylamido substituents on geminal and vicinal 1H-19F coupling constants, in comparison with the reported effects of oxygen substituents.  相似文献   

8.
Nucleophilic displacement of 4,4′-di-O-mesyl-α,α-trehalose hexabenzoate occurred very readily to give, by a double inversion, the thermodynamically more stable 4,4′-di-iodide in 93% yield with overall retention of configuration. Reductive dehalogenation of the 4,4′-di-iodide with hydrazine hydrate—Raney nickel followed by debenzoylation afforded 4,4′-dideoxytrehalose in high, overall yield. Alternatively, treatment of trehalose with sulphuryl chloride afforded 4,6-dichloro-4,6-dideoxy-α-D-galactopyranosyl 4,6-dichloro-4,6-dideoxy-α-D-galactopyranoside, which underwent selective dehalogenation at the secondary positions on treatment with hydrazine hydrate—Raney nickel. Subsequent nucleophilic displacement of the primary chlorine substituents with sodium acetate in N,N-dimethylformamide gave, after deacetylation, 4,4′-dideoxy-α,α-trehalose. Repeated treatment of the 4,4′,6,6′-tetrachlorotrehalose derivative with hydrazine hydrate—Raney nickel gave 4,4′,6,6′-tetradeoxy-α,α-trehalose. An alternative route to the tetradeoxy derivative was via thiocyanate displacement of the 4,4′,6,6′-tetramethanesulphonate. The tetrathiocyanate, formed in poor yield, was desulphurized with Raney nickel to give the tetradeoxytrehalose. Treatment of 4,6-dichloro-4,6-dideoxy-α-D-galactopyranosyl 4,6-dichloro-4,6-dideoxy-α-D-galactopyranoside with methanolic sodium methoxide yielded, initially, 3,6-anhydro-4-chloro-4-deoxy-α-D-galactopyranosyl 4,6- dichloro-4,6-dideoxy-α-D-galactopyranoside which was transformed into the 3,6:3′,6′-dianhydro derivative. Reductive dechlorination of the dianhydride proceeded smoothly to give the 3,6:3′,6′-dianhydride of 4,4′-dideoxytrehalose.  相似文献   

9.
Derivatives of (S)-2-fluoro- -daunosamine and (S)-2-fluoro- -ristosamine were synthesized, starting ultimately from 2-amino-2-deoxy- -glucose which was converted, according to the literature, into methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-O-(methylsulfonyl)-α- -glucopyranoside (2). Treatment of 2 with tetrabutylammonium fluoride gave a 63% yield of (known) methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro-α- -altropyranoside (4), together with a 6% yield of its 2-benzamido-2,3-dideoxy-3-fluoro-α- -gluco isomer. From 4, the corresponding 6-bromo-2,3,6-trideoxyglycoside 4-benzoate (6) was obtained by Hanessian-Hullar reaction. Dehydrobromination of 6, followed by catalytic hydrogenation of the resulting 5-enoside, and subsequent debenzoylation and N-trifluoroacetylation, afforded the fluorodaunosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-β- -galactopyranoside. Reductive debromination of 6, followed by debenzoylation and N-trifluoroacetylation, gave the fluororistosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-α- -altropyranoside. The 1H-n.m.r. spectra of the new aminofluoro sugars are discussed with respect to the effects of neighboring amino and acylamido substituents on geminal and vicinal 1H–19F coupling constants, in comparison with the reported effects of oxyge substituents.  相似文献   

10.
A convenient method of synthesis of 1,6-anhydro-4-deoxy-2-O-tosyl-4-fluoro-β-D-glucopyranose by fusion of 1,6;3,4-dianhydro-2-O-tosyl-β-D-galactopyranose with 2,4,6-trimethylpyridinium fluoride was found. By a successive action of ammonia, methyl trifluoroacetate, and acetic anhydride, the resulting compound was transformed into 1,6-anhydro-3-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-β-D-glucopyranose, which was converted into 3,6-di-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-αD-glucopyranosyl fluoride by the reaction with HF/Py. The resulting fluoride was further used as a glycosyl donor in the synthesis of methylumbelliferyl N-acetyl-4-deoxy-4-fluoro-β-D-glucosaminide.  相似文献   

11.
1,2:5,6-Di-O-isopropylidene-alpha-D-glucofuranose by the sequence of mild oxidation, reduction, fluorination, periodate oxidation, borohydride reduction, and sulfonylation gave 3-deoxy-3-fluoro-1,2-O-isopropylidene-5-O-p-toluenesulfonyl-alpha-D-xylofuranose (5). Tosylate 5 was converted to thioacetate derivative 6, which after acetolysis gave 1,2-di-O-acetyl-5-S-acetyl-3-deoxy-3-fluoro-5-thio-D-xylofuranose (7). Condensation of 7 with silylated thymine, uracil, and 5-fluorouracil afforded nucleosides 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) thymine (8), 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) uracil (9), and 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) 5-fluorouracil (10). Compounds 8, 9, and 10 are biologically active against rotavirus infection and the growth of tumor cells.  相似文献   

12.
RNA exhibits a higher structural diversity than DNA and is an important molecule in the biology of life. It shows a number of secondary structures such as duplexes, hairpin loops, bulges, internal loops, etc. However, in natural RNA, bases are limited to the four predominant structures U, C, A, and G and so the number of compounds that can be used for investigation of parameters of base stacking, base pairing, and hydrogen bond is limited. We synthesized different fluoromodifications of RNA building blocks: 1′-deoxy-1′-phenyl-β-d-ribofuranose (B), 1′-deoxy-1′-(4-fluorophenyl)-β-d-ribofuranose (4 FB), 1′-deoxy-1′-(2,4-difluorophenyl)-β-d-ribofuranose (2,4 DFB), 1′-deoxy-1′-(2,4,5-trifluorophenyl)-β-d-ribofuranose (2,4,5 TFB), 1′-deoxy-1′-(2,4,6-trifluorophenyl)-β-d-ribofuranose, 1′-deoxy-1′-(pentafluorophenyl)-β-d-ribofuranose (PFB), 1′-deoxy-1′-(benzimidazol-1-yl)-β-d-ribofuranose (BI), 1′-deoxy-1′-(4-fluoro-1H-benzimidazol-1-yl)-β-d-ribofuranose (4 FBI), 1′-deoxy-1′-(6-fluoro-1H-benzimidazol-1-yl)-β-d-ribofuranose (6 FBI), 1′-deoxy-1′-(4,6-difluoro-1H-benzimidazol-1-yl)-β-d-ribofuranose (4,6 DFBI), 1′-deoxy-1′-(4-trifluoromethyl-1H-benzimidazol-1-yl)-β-d-ribofuranose (4 TFM), 1′-deoxy-1′-(5-trifluoromethyl-1H-benzimidazol-1-yl)-β-d-ribofuranose (5 TFM), and 1′-deoxy-1′-(6-trifluoromethyl-1H-benzimidazol-1-yl)-β-d-ribofuranose (6 TFM). These amidites were incorporated and tested in a defined A, U-rich RNA sequence (12-mer, 5′-CUU UUC XUU CUU-3′ paired with 3′-GAA AAG YAA GAA-5′). Only one position was modified, marked as X and Y, respectively. UV melting profiles of those oligonucleotides were measured.  相似文献   

13.
Oxidation with the dimethyl sulfoxide-acetic anhydride reagent of methyl 2-O-acetyl-4,6-O-benzylidene-α-d-mannopyranoside, obtained in quantitative yield from the corresponding 4,6-benzylidene acetal by stereoselective opening of a 2,3-orthoester, led in good yield to methyl 2-O-acetyl-4,6-O-benzylidene-α-d-arabino-hexopyranosid-3-ulose, which was reduced with either sodium borohydride or sodium borodeuteride into a methyl 4,6-O-benzylidene-α-d-altropyranoside or its 3-2H derivative. A sequence involving a C-6 halogenation-dehydrohalogenation followed by catalytic hydrogenation of the resulting methyl 6-deoxy-α-d-arabino-hex-5-enopyranoside gave methyl 6-deoxy-β-l-galactopyranoside (methyl β-l-fucopyranoside) and then α-l-fucose, with an overall yield of 24% with respect to the starting methyl α-d-mannopyranoside.  相似文献   

14.
The synthesis of methyl (beta-D-glucopyranosyluronic acid)-(1-->3)-(2-acetamido-2-deoxy-6-O-sulfonato-beta-D-galactopyr anosyl)-(1-->4)-(beta-D-glucopyranosid)uronate trisodium salt, a chondroitin 6-sulfate trisaccharide derivative, is described. Loss of stereocontrol in glycosylation reactions involving activated 4,6-O-benzylidene derivatives of the 2-deoxy-2-trichloroacetamido-D-galacto series and D-glucuronic acid-derived acceptors was highlighted. This draw-back was overcome through the use of phenyl 3,4,6-tri-O-acetyl-2-deoxy-1-thio-2-trichloroacetamido-beta-D-gala ctopyranoside, which afforded the desired beta-linked disaccharide derivative in high yield with an excellent stereoselectivity. This later was submitted to acid-catalyzed methanolysis, followed by benzylidenation, and condensed with methyl 2,3,4-tri-O-benzoyl-1-O-trichloroacetimidoyl-alpha-D-glucopyran uronate to afford the expected trisaccharide derivative. Subsequent transformation of the N-trichloroacetyl group into N-acetyl, mild acid hydrolysis, selective O-sulfonation at C-6 of the amino sugar moiety, and saponification afforded the target molecule as its sodium salt in high yield.  相似文献   

15.
(4R)-2,3-O-Isopropylidene-methylspiro[4,6-dideoxy-alpha-L-lyxo+ ++-hexopyranosid-4,5'-imidazolidin]-2',4'-dione and (4R)-2,3-O-isopropylidene-methylspiro[4,6-dideoxy-beta-D-ribo-h exopyranosid-4,5'-imidazolidin]-2',4'-dione were prepared under various reaction conditions starting from methyl 6-deoxy-2,3-O-isopropylidene-alpha-L-lyxo-hexopyranosid-4-++ +ulose. Corresponding alpha-amino acids methyl (4R)-4-amino-4-C-carboxy-4,6-dideoxy-alpha-L-lyxo-hexopyranosid e and methyl (4R)-4-amino-4-C-carboxy-4,6-dideoxy-beta-D-ribo-hexopyranoside were obtained from the above hydantoins by selective acid hydrolysis of the isopropylidene group, followed by basic hydrolysis of the hydantoin ring. The crystal structures of both hydantoin derivatives are also presented.  相似文献   

16.
Starting from sucrose, 2,3,1',3',4',6'-hexa-O-benzoyl-6-deoxy-6-iodosucrose (1) was synthesized. Reaction of 1 with sulfuryl chloride in pyridine gave 2,3,1',3',4',6'-hexa-O-benzoyl-4-chloro-4,6-dideoxy-6-iodogalactosucr ose (2). Compound 2 was treated with tributyltin hydride in toluene in the presence of a radical initiator, alpha, alpha-azobis(isobutanonitrile) (AIBN), to remove iodine and chlorine groups and give hexa-O-benzoyl-4,6-dideoxysucrose. Benzoyl groups were removed by sodium methoxide in methanol to give 4,6-dideoxysucrose. Sucrose was modified at carbon atom 3, carbon atom 4, or carbon atoms 4 and 6, and these analogs were tested as inhibitors of the D-glucansucrases (D-glucosyltransferases) of Streptococcus mutans 6715 and Leuconostoc mesenteroides B-512F. Sucrose analogs used in this study are 4-deoxysucrose and 4-chloro-4-deoxygalactosucrose with S. mutans 6715 D-glucansucrases (GTF-S and GTF-I), and 3-deoxysucrose, 4-deoxysucrose, 4-chloro-4-deoxygalactosucrose, 6-deoxysucrose, and 4,6-dideoxysucrose with L. mesenteroides B-512F D-glucansucrase. The data indicate that 3-deoxysucrose, 4-deoxysucrose, and 4-chloro-4-deoxygalactosucrose are weak noncompetitive inhibitors for B-512F dextransucrase, with Ki values of 530, 201, and 202mM respectively. For the same enzyme, 6-deoxysucrose was a strong competitive inhibitor, with Ki of 1.60mM, and 4,6-dideoxysucrose was a good competitive inhibitor, with Ki of 20.3mM. 4-Deoxysucrose was a weak noncompetitive inhibitor for both GTF-I and GTF-S, with Ki values of 672 and 608mM, respectively. 4-Chloro-4-deoxygalactosucrose was also a weak noncompetitive inhibitor for GTF-I and GTF-S with Ki values of 391 and 308mM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
5-Deoxy-5-fluoro- (1), 5.3'-dideoxy-5-fluoro- (2), and 5,3',4'-trideoxy-5-fluoro-kanamycin B (3) have been prepared by treatment of 5-epihydroxyl precursors (prepared by the Mitsunobu reaction) with DAST as the key step. 5,3'-Dideoxy-5,5-difluoro- (26) and 5,3',4'-trideoxy-5,5-difluoro-kanamycin B (27) were also prepared by treatment of the corresponding 5-oxo derivatives with DAST. These 5-deoxy-5-fluoro and 5-deoxy-5,5-difluoro derivatives showed markedly decreased toxicity as compared with the parent compounds.  相似文献   

18.
The nucleophilic addition-elimination reaction of 2',3',5'-tri-O-acetyl-2-fluoro-O6-[2-(4-nitrophenyl)ethyl]inosine (8) with [15N]benzylamine in the presence of triethylamine afforded the N2-benzyl[2-15N]guanosine derivative (13) in a high yield, which was further converted into the N2-benzoyl[2-15N] guanosine derivative by treatment with ruthenium trichloride and tetrabutylammonium periodate. A similar sequence of reactions of 2',3',5'-tri-O-acetyl-2-fluoro-06-[2-(methylthio)ethyl]inosine (9) and the 6-chloro-2-fluoro-9-(beta-D-ribofuranosyl)-9H-purine derivative (11), which were respectively prepared from guanosine, with potassium [15N]phthalimide afforded the N2-phthaloyl [2-15N]guanosine derivative (15; 62%) and 9-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)-6-chloro-2-[15N]phthalimido-9H-purine (17; 64%), respectively. Compounds 15 and 17 were then efficiently converted into 2',3',5'-tri-O-acetyl [2-15N]guanosine. The corresponding 2'-deoxy derivatives (16 and 18) were also synthesized through similar procedures.  相似文献   

19.
2'-deoxy-2'-methylideneuridine derivative 9 was converted into 2',3'-didehydro-2',3'-dideoxy-2'-phenyl-selenomethyl derivative 16, which was treated with NCS and tert-butyl carbamate to afford 3'-amino derivative 18 via a [2,3]-sigmatropic rearrangement. Treatment of 9 with DAST gave a mixture of 2',3'-didehydro-2', 3'-dideoxy-2'-fluoromethyl derivative 19 and 3'-"up"-fluoro-2'-methylidene derivative 20 in a ratio of 1.5 : 1. On the other hand, when 12 was treated with DAST, 19 and 3'-"down"-fluoro-2'-methylidene derivative 21 were obtained in a ratio of 1 : 1.6. These nucleosides were converted into the corresponding cytidine derivatives 4, 6, and 8, respectively. The reaction mechanisms as well as biological activity of these compounds will also be discussed.  相似文献   

20.
Selective O-desilylation of 6,1',6'-tri-O-tert-butyldiphenylsilyl-2,3,4,3',4'-penta-O-benzo ylsucrose with hydrofluoric acid in acetonitrile led to the 1'-O-tert-butyldiphenylsilyl derivative (96% yield), which was further perbenzoylated and deprotected at OH-1' with tetrabutylammonium fluoride (86%). An analogous sequence with the corresponding O-acetylated sucrose derivative and tetrabutylammonium fluoride as desilylating agent resulted in a lower yield of the C-1' hydroxy derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号