首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
The kinetics of Ca2+ activation of membrane-bound (Ca2+ + Mg2+)-dependent ATPase (ATP phosphohydrolase EC 3.6.1.3) from human erythrocytes was studied. The ATPase from membrane prepared in the presence of 0.7-500muM Ca2+ showed positively cooperative behaviour and a Km for Ca2+ of between 1 and 4 muM. If the membranes were prepared in the absence of Ca2+ the Km increased, and an enzyme model with at least four calcium-binding sites accounted for the kinetic change assuming that one calcium-binding site decreased its affinity. Mg2+ or Mg-ATP could not replace Ca2+. Continuous-flow centrifugation involving a shear stress on membranes was necessary to obtain the high affinity ATPase activity. Using ordinary centrifugation the Ca2+-prepared membranes behaved as membranes prepared in the absence of Ca2+. The Ca2+-stimulated ATPase from membranes prepared without Ca2+ showed reduced maximum activity, but dialyzed, membrane-free hemolysates, whether prepared with Ca2+ present or not, recovered the activity when the hemolysate was present during the ATPase assay. It is suggested that the different Ca2+-affinities of the Ca2+-stimulated ATPase correspond to two different states of the calcium-pump.  相似文献   

2.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

3.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [gamma-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250,000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes. These results suggest that the formation of triphosphoinositide rather than the (C2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

4.
Purified perigranular and plasma membranes isolated from rat peritoneal mast cells were examined for Ca2+- and Mg2+-dependent ATPase activity. Isolated perigranular membranes contained only a low-affinity Ca2+- or Mg2+-dependent ATPase (Km greater than 0.5 mM). The plasma membranes contained both a low-affinity Ca2+- or Mg2+-dependent ATPase (Km = 0.4 mM, Vmax. = 20 nmol of Pi/min per mg), as well as a high-affinity Ca2+- and Mg2+-dependent ATPase (Km = 0.2 microM, Vmax. = 6 nmol of Pi/min per mg).  相似文献   

5.
Two distinctly different ATPases have been reported to be endogenous to the mitotic apparatus: a Mg2+-ATPase resembling axonemal dynein, and a Ca2+-ATPase postulated to be bound in membranes. To examine the nature of the Mg2+-ATPase, we isolated membrane-free mitotic spindles from Stronglylocentrotus droebachiensis embryos by rapidly lysing these in a calcium-chelating, low-ionic-strength buffer (5 mM EGTA, 0.5 mM MgCl2, 10 mM PIPES, pH 6.8) that contained 1% Nonidet P-40. The fibrous isolated mitotic spindles closely resembled spindles in living cells, both in general morphology and in birefringence. In electron micrographs, the spindles were composed primarily of microtubules, free from membranes and highly extracted of intermicrotubular cytoplasmic ground substance. As analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), the pelleted spindles contain 18% tubulin, variable amounts of actin (2-8%), and an unidentified protein of 55 kdaltons in a constant weight ratio to tubulin (1:2.5). The isolated spindles also contained two polypeptides, larger than 300 kdaltons, that comigrated with egg dynein polypeptides, and ATPase activity (0.02 mumol Pi/mg . min) that closely resembled both flagellar and egg dynein. The spindle Mg2+-ATPase showed a ratio of Ca2+-/Mg2+-ATPase = 0.85, had minimal activity in KCl and EDTA, and cleaved GTP at 35% of the rate of ATP. The Mg2+-ATPase was insensitive to ouabain or oligomycin. The spindle Mg2+-ATPase was inhibited by sodium vanadate but, like egg dynein, was less sensitive to vanadate than flagellar dynein. The spindle Mg2+- ATPase does not resemble the mitotic Ca2+-ATPase described by others. We propose that the spindle Mg2+-ATPase is egg dynein. Bound carbohydrate on the two high-molecular-weight polypeptides of both egg dynein and the spindle enzyme suggest that these proteins may normally associate with membranes in the living cell.  相似文献   

6.
Coated microvesicle fractions isolated from ox forebrain cortex by the ultracentrifugation procedure of Pearse (1) and by the modified, less time consuming method of Keen et al (2) had comparable Ca2+ +Mg2+ dependent ATPase activities (about 9 mumol/h per mg protein). The Na+ +K+ +Mg2+ dependent ATPase activity was 3.2 mumol/h per mg (+/- 1.0, S.D., n = 3) when microvesicles were prepared according to (1) and 1.5 mumol/h per mg (+/- 1.0, S.D., n = 3) when prepared according to (2). Oligomycin, ruthenium red, and trifluoperazine, inhibitors of Ca2+ transport in mitochondria and erythrocyte membranes had no effect on Ca2+ +Mg2+ dependent ATPase from any of the preparations. As demonstrated both by ATPase assays and electron microscopy, coated microvesicles could be bound to immunosorbents prepared with poly-specific antibodies against a coated microvesicle fraction obtained by the method of Pearse (1). The binding could be inhibited by dissolved coat protein using partially purified clathrin. The fraction of coated vesicles eluted from the immunosorbent was purified relative to the starting material as judged by electron microscopy. The Ca2+ +Mg2+ ATPase activity and calmodulin content was copurified with the coated microvesicles and the specific activity of Na+ +K+ +Mg2+ ATPase was decreased. Na+ +K+ +Mg2+ dependent ATPase activity in the coated microvesicle fraction could be ascribed to membranes with the appearance of microsomes. These membranes were also bound to the immunosorbents, but the binding was not influenced by clathrin. The capacity of the immunosorbents for these membranes was less than for the coated microvesicles, resulting in a decrease of Na+ +K+ +Mg2+ dependent ATPase activity in the eluted coated microvesicle fraction. It was concluded that Ca2+ +Mg2+ ATPase activity is not a contamination from plasma membrane vesicles or mitochondrial membranes but seems to be an integral part of the coated vesicle membrane.  相似文献   

7.
The (Ca2+ + Mg2+)-ATPase present per mg of protein in erythrocyte membranes of controls and patients with cystic fibrosis (CF) was determined by estimation of the levels of its phosphoprotein. In the presence of 10 mM free Ca2+, which inhibits phosphoprotein decomposition, significantly less phosphoprotein intermediate, ECaP, was found in erythrocyte membranes from CF patients than in age- and sex-matched controls; this correlated with a significant decrease in (Ca2+ + Mg2+)-ATPase activity. These observations indicate a decrease in the number of functional (Ca2+ + Mg2+)-ATPase molecules in erythrocyte membranes from CF patients or an alteration in either the structure of the pump protein or the composition of its environment.  相似文献   

8.
The interactions of Tb3+ and sarcoplasmic reticulum (SR) were investigated by inhibition of Ca2+-activated ATPase activity and enhancement of Tb3+ fluorescence. Ca2+ protected against Tb3+ inhibition of SR ATPase activity. The apparent association constant for Ca2+, determined from the protection, was about 6 x 10(6) M-1, suggesting that Tb3+ inhibits the ATPase activity by binding to the high affinity Ca2+ binding sites. Mg2+ did not protect in the 2-20 mM range. The association constant for Tb3+ binding to this Ca2+ site was estimated to be about 1 x 10(9) M-1. No cooperativity was observed for Tb3+ binding. No enhancement of Tb3+ fluorescence was detected. A second group of binding sites, with weaker affinity for Tb3+, was observed by monitoring the enhancement of Tb3+ fluorescence (lambda ex 285 nm, lambda em 545 nm). The fluorescence intensity increased 950-fold due to binding. Ca2+ did not complete for binding at these sites, but Mg2+ did. The association constant for Mg2+ binding was 94 M-1, suggesting that this may be the site that catalyzes phosphorylation of the ATPase by inorganic phosphate. For vesicles, Tb3+ binding to these Mg2+ sites was best described as binding to two classes of binding sites with negative cooperativity. If the SR ATPase was solubilized in the nonionic detergent C12E9 (dodecyl nonaoxyethylene ether alcohol), in the absence of Ca2+, only one class of Tb3+ binding sites was observed. The total number of sites appeared to remain constant. If Ca2+ was included in the solubilization step, Tb3+ binding to these Mg2+ binding sites displayed positive cooperativity (Hill coefficient, 2.1). In all cases, the apparent association constant for Tb3+, in the presence of 5 mM MgCl2, was in the range of 1-5 x 10(4) M-1.  相似文献   

9.
Basolateral and brush-border vesicles from pig kidney cortex were prepared by differential centrifugation followed by free-flow electrophoresis. A low-affinity (Ca2+ or Mg2+)-ATPase which co-migrated with alkaline phosphatase was demonstrated. A considerable enrichment (by a factor of 10) of this ATPase activity was only observed in the brush-border and not in the basolateral membrane fractions. Maximal stimulation of this brush-border enzyme by Ca2+ was achieved when the ratio of Ca2+ to ATP reached a value between 1 and 2. The enzyme was not inhibited by excess Ca2+ or Mg2+. A kinetic analysis of the azide-insensitive (Ca2+ or Mg2+)-ATPase gave a Km of 0.43 mM for Ca-ATP and of 0.14 mM for Mg-ATP.  相似文献   

10.
The incubation of erythrocyte suspensions or isolated membranes containing a residual amount of hemoglobin (0.04% of original cellular hemoglobin) with tert-butyl hydroperoxide (tBHP, 0.5 mM) caused significant inhibition of basal and calmodulin-stimulated Ca2+ + Mg2(+)-ATPase activities and the formation of thiobarbituric acid reactive products measured as malondialdehyde. In contrast, the treatment of white ghosts (membranes not containing hemoglobin) with tBHP (0.5 mM) did not lead to appreciable enzyme inhibition within the first 20 min and did not result in malondialdehyde (MDA) formation. However, the addition of either 10 microM hemin or 100 microM ferrous chloride + 1 mM ADP to white ghosts produced hydroperoxide effects similar to those in pink ghosts (membranes with 0.04% hemoglobin). The concentrations of hemin and ferrous chloride which caused half-maximal inhibition of Ca2+ + Mg2(+)-ATPase activity at 10 min were 0.5 and 30 microM, respectively. The effects of several antioxidants (mannitol, thiourea, hydroxyurea, butylated hydroxytoluene, and ascorbate) were investigated for their protective effects against oxidative changes resulting from tBHP treatment. Over a 30-min incubation period only ascorbate significantly reduced the enzyme inhibition, MDA formation, and protein polymerization. Thiourea and hydroxyurea decreased MDA formation and protein polymerization but failed to protect against the enzyme inhibition. Butylated hydroxytoluene was similar to thiourea and hydroxyurea but with better protection at 10 min. Mannitol, under these conditions, was an ineffective antioxidant for all parameters tested.  相似文献   

11.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

12.
A rat liver plasma membrane fraction showed an ATP-dependent uptake of Ca2+ which was released by the ionophore A23187. This activity represents a plasma membrane component and is not due to microsomal contamination. The Ca2+ transport displayed several properties which were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes (Lotersztajn et al. (1981) J. Biol. Chem. 256, 11209-11215; Birch-Machin, M.A. and Dawson, A.P. (1986) Biochim. Biophys. Acta 855, 277-285). These observations have shown that Ca2+-ATPase does not require added Mg2+ whereas we have demonstrated that, in the same membrane preparation, Ca2+ uptake required millimolar concentrations of added Mg2+. The Ca2+-ATPase has a broad specificity for the nucleotides ATP, GTP, UTP and ITP while Ca2+ uptake remains specific for ATP. Ca2+ uptake also displayed different affinities for free Ca2+ and MgATP compared to Ca2+-ATPase activity, with apparent Km values of 0.25 microM Ca2+, 0.15 mM MgATP and 1.0 microM Ca2+, 4 microM MgATP respectively. The apparent maximum rate of Ca2+ uptake was about 150-fold less than Ca2+-ATPase activity. These features suggest that the high-affinity Ca2+-ATPase is not the enzymic expression of the ATP-dependent Ca2+ transport mechanism.  相似文献   

13.
We have identified and characterized calcium transport and the phosphorylated intermediate of the (Ca2+ + Mg2+)-ATPase in plasma membrane vesicles prepared from rat liver. The calcium transport did not absolutely require the presence of oxalate and was completely inhibited by 1 microM of ionophore A23187. Oxalate, which serves as a trapping agent in calcium uptake of skeletal muscle and liver microsomes, was not absolutely required to maintain the net accumulation of calcium. The Vmax and Km for calcium uptake were 35.2 +/- 10.1 pmol of calcium/mg of protein/min, and 17.6 +/- 2.5 nM of free calcium, respectively. Ten mM magnesium was required for the maximal accumulation of calcium. Substitution of 5 and 10 mM ADP, CTP, GTP, and UTP for ATP could not support calcium uptake. The calcium uptake was not affected by 0.5 mM ouabain, 20 mM azide, or 2 micrograms/ml of oligomycin but was inhibited in a dose-dependent fashion by vanadate, with a Ki of approximately 20 microM for vanadate. The substrate affinities and specificities of this calcium-transport activity suggest that it is closely associated with the (Ca2+ + Mg2+)-ATPase reported in the plasma membranes of liver (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215). A calcium-stimulated and magnesium-dependent phosphoprotein was also demonstrated in the same membrane vesicles. The free calcium concentration at which its phosphorylation was half-maximal was 15.5 +/- 5.6 nM. Sodium fluoride, ouabain, sodium azide, oligomycin, adriamycin, and N,N'-dicyclohexylcarbodiimide did not affect its formation while vanadate at 100 microM inhibited the calcium-dependent phosphorylation by approximately 60%. The properties of this phosphoprotein suggest that it may be the phosphorylated intermediate of the (Ca2+ + Mg2+)-ATPase in the plasma membranes of rat liver.  相似文献   

14.
Magnesium transport across sarcoplasmic reticulum (SR) vesicles was investigated in reaction mixtures of various composition using antipyrylazo III or arsenazo I to monitor extravesicular free Mg2+. The half-time of passive Mg2+ efflux from Mg2+-loaded SR was 100 s in 100 mM KCl, 150 S in 100 mM K gluconate, and 370 S in either 100 mM Tris methanesulfonate or 200 mM sucrose solutions. The concentration and time course of Mg2+ released into the medium was also measured during ATP-dependent Ca2+ uptake by SR. In reaction mixtures containing up to 3 mM Mg2+, small changes in free magnesium of 10 microM or less were accurately detected without interference from changes in free Ca2+ of up to 100 microM. Three experimental protocols were used to determine whether the increase of free [Mg2+] in the medium after an addition of ATP was due to Mg2+ dissociated from ATP following ATP hydrolysis or to Mg2+ translocation from inside to outside of the vesicles. 1) In the presence of ATP-regenerating systems which maintained constant ATP to ADP ratios and normal rates of active Ca2+ uptake, the increase of Mg2+ in the medium was negligible. 2) Mg2+ released during ATP-dependent Ca2+ uptake by SR was similar to that observed during ATP hydrolysis catalyzed by apyrase, in the absence of SR. 3) In SR lysed with Triton X-100 such that Ca2+ transport was uncoupled from ATPase activity, the rate and amount of Mg2+ release was greater than that observed during ATP-dependent Ca2+ uptake by intact vesicles. Taken together, the results indicate that passive fluxes of Mg2+ across SR membranes are 10 times faster than those of Ca2+ and that Mg2+ is not counter-transported during active Ca2+ accumulation by SR even in reaction mixtures containing minimal concentrations of membrane permeable ions that could be rapidly exchanged or cotransported with Ca2+ (e.g. K+ or Cl-).  相似文献   

15.
The present paper characterizes the Na+-stimulated ATPase activity present in basal-lateral plasma membranes from guinea-pig kidney proximal tubular cells. These characteristics are compared with those of the (Na+ + K+)-stimulated ATPase activity, and they are: (A) Na+-ATPase activity: (1) requires Mg2+; (2) may be activated by mu molar quantities of Ca2+; (3) optimal ratio Mg:ATP = 5:1-2 and Ka for Mg:ATP = 3:0.60 mM; (4) Ka for Na+:8 mM; (5) does not require K+; (6) is only stimulated by Na+ and Li+ (in a lower extent); (7) is similarly stimulated by the Na+ salt of different anions; (8) hydrolyzes only ATP; (9) optimal temperature: 47 degrees C; (10) optimal pH: 6.9; (11) is ouabain insensitive; (12) is totally inhibited by 1.5 mM ethacrynic acid, 2 mM furosemide and 0.75 mM triflocin. (B) (Na+ + K+)-ATPase activity: (1) also requires Mg2+; (2) is inhibited by Ca2+; (3) optimal ratio Mg:ATP = 1.25:1 and Ka for Mg:ATP = 0.50: 0.40 mM; (4) Ka for Na+: 14 mM (data not shown); (5) needs K+ together with Na+; (6) K+ may be substituted by: Rb+ greater than NH+4 greater than Cs+; (7) is anion insensitive; (8) hydrolyzes mostly ATP and to a lesser extent GTP, ITP, UTP, ADP, CTP; (9) optimal temperature: 52 degrees C; (10) optimal pH: 7.2; (11) 100% inhibited by 1 mM ouabain; (12) 63% inhibited by 1.5 mM ethacrynic acid, 10% inhibited by 2 mM furosemide and insensitive to 0.75 mM triflocin.  相似文献   

16.
The effects of K+ and Na+ on the Ca2+,Mg2+-ATPase of sarcoplasmic reticulum fragments (SRF) were investigated at 1 mM ATP. There was an alteration of the sensitivity of the ATPase to the monovalent cations during storage of the SRF preparation. The Ca2+, Mg2+-ATPase of freshly prepared SRF was slightly activated by 5-10 mM K+ and Na+. Mg2+-ATPase was inhibited by both the monovalent cations to the same extent, and this response to the ions was independent of the freshness of the preparations. After storage of SRF, however, the Ca2+,Mg2+-ATPase was markedly activated by higher concentrations of K+ and Na+ (0.2-0.3 M). K+ and Na+ reduced the Ca uptake at the steady state in freshly prepared SRF, but did not affect pre-steady state uptake. In the presence of oxalate, the rate of Ca accumulation both in fresh and stored preparations was activated by 0.1-0.2 M K+ and Na+. The Ca2+, mg2+-ATPase with oxalate, so-called "extra ATPase," showed the same response to the ions as did the activity without oxalate during storage.  相似文献   

17.
The block of rabbit skeletal ryanodine receptors (RyR1) and dog heart RyR2 by cytosolic [Mg2+], and its reversal by agonists Ca2+, ATP and caffeine was studied in planar bilayers. Mg2+ effects were tested at submaximal activating [Ca2+] (5 microM). Approximately one third of the RyR1s had low open probability ("LA channels") in the absence of Mg2+. All other RyR1s displayed higher activity ("HA channels"). Cytosolic Mg2+ (1 mM) blocked individual RyR1 channels to varying degrees (32 to 100%). LA channels had residual P(o) <0.005 in 1 mM Mg2+ and reactivated poorly with [Ca2+] (100 microM), caffeine (5 mM), or ATP (4 mM; all at constant 1 mM Mg2+). HA channels had variable activity in Mg2+ and variable degree of recovery from Mg2+ block with Ca2+, caffeine or ATP application. Nearly all cardiac RyR2s displayed high activity in 5 microM [Ca2+]. They also had variable sensitivity to Mg2+. However, the RyR2s consistently recovered from Mg2+ block with 100 microM [Ca2+] or caffeine application, but not when ATP was added. Thus, at physiological [Mg2+], RyR2s behaved as relatively homogeneous Ca2+/caffeine-gated HA channels. In contrast, RyR1s displayed functional heterogeneity that arises from differential modulatory actions of Ca2+ and ATP. These differences between RyR1 and RyR2 function may reflect their respective roles in muscle physiology and excitation-contraction coupling.  相似文献   

18.
Purified canine cardiac sarcoplasmic reticulum vesicles were passively loaded with 45CaCl2 and assayed for Ca2+ releasing activity according to a rapid quench protocol. Ca2+ release from a subpopulation of vesicles was found to be activated by micromolar Ca2+ and millimolar adenine nucleotides, and inhibited by millimolar Mg2+ and micromolar ruthenium red. 45Ca2+ release in the presence of 10 microM free Ca2+ gave a half-time for efflux of 20 ms. Addition of 5 mM ATP to 10 microM free Ca2+ increased efflux twofold (t1/2 = 10 ms). A high-conductance calcium-conducting channel was incorporated into planar lipid bilayers from the purified cardiac sarcoplasmic reticulum fractions. The channel displayed a unitary conductance of 75 +/- 3 pS in 53 mM trans Ca2+ and was selective for Ca2+ vs. Tris+ by a ratio of 8.74. The channel was dependent on cis Ca2+ for activity and was also stimulated by millimolar ATP. Micromolar ruthenium red and millimolar Mg2+ were inhibitory, and reduced open probability in single-channel recordings. These studies suggest that cardiac sarcoplasmic reticulum contains a high-conductance Ca2+ channel that releases Ca2+ with rates significant to excitation-contraction coupling.  相似文献   

19.
ATPase activity in highly purified rat liver lysosome preparations was evaluated in the presence of other membrane cellular ATPase inhibitors, and compared with lysosome ATP-driven proton translocating activity. Replacement of 5 mM Mg2+ with equimolar Ca2+ brought about a 50% inhibition in divalent cation-dependent ATPase activity, and an 80% inactivation of ATP-linked lysosomal H+ pump activity. In the presence of optimal concentrations of Ca2+ and Mg2+, ATPase activity was similar to that seen in an Mg2+ medium. Mg2+-dependent ATPase activity was greatly inhibited (from 70 to 80%) by the platinum complexes; cis-didimethylsulfoxide dichloroplatinum(II) (CDDP) at approximately 90 microM and cis-diaminedichloroplatinum(II) at twofold higher concentrations. Less inhibition, about 30 and 45%, was obtained with N,N'-dicyclohexylcarbodiimide and N-ethylmaleimide, and the maximal effect occurred in the 50-100 microM and 0.1-1.5 mM ranges, respectively. The concentration dependence of inhibition by the above drugs was determined for both proton pumping and ATPase activities, and half-maximal inhibition concentration of each activity was found at nearly similar values. A micromolar concentration of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) prevented ATP from setting up a pH gradient across the lysosomal membranes, but stimulated Mg2+-ATPase activity significantly. ATPase activity in Ca2+ medium was also inhibited by CDDP and stimulated by FCCP, but both effects were two- to threefold less than those observed in Mg2+ medium. FCCP failed to stimulate ATPase activity in a CDDP-supplemented medium, thus suggesting that the same ATPase activity fraction was sensitive to both CDDP and FCCP. Mg2+-ATPase activity, like the proton pump, was anion dependent. The lowest activity was recorded in a F-medium, and increased in the order of F- less than SO2-4 less than Cl- approximately equal to Br-. The CDDP-sensitive ATPase activity observed, supported by Mg2+ and less so by Ca2+, may be related to lysosome proton pump activity.  相似文献   

20.
Rough endoplasmic reticulum membranes, purified from isolated rat pancreatic acini stimulated by carbachol, had a decreased Ca2+ content and increased (Ca2+ + Mg2+)-ATPase activity. Ca2+ was regained and ATPase activity reduced to control levels only after blockade by atropine. The (Ca2+ + Mg2+)-ATPase was activated by free Ca2+ (half-maximal at 0.17 microM; maximal at 0.7 microM) over the concentration range which occurs in the cell cytoplasm. Pretreatment with EGTA, at a high concentration (5 mM), inhibited ATPase activity which, our results suggest, was due to removal of a bound activator such as calmodulin. The rate of (Ca2+ + Mg2+)-ATPase actively declined during the 10-min period over which maximal active accumulation of Ca2+ by membrane vesicles occurs. In the presence of ionophore A23187, which released actively accumulated Ca2+ and stimulated the (Ca2+ + Mg2+)-ATPase, this time-dependent decline in activity was not observed. Our data provide evidence that the activity of the Ca2+-transporting ATPase of the rough endoplasmic reticulum is regulated by both extra and intravesicular Ca2+ and is consistent with a direct role of this enzyme in the release and uptake of Ca2+ during cholinergic stimulation of pancreatic acinar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号