首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hu X  Jiang M  Zhang A  Lu J 《Planta》2005,223(1):57-68
The histochemical and cytochemical localization of abscisic acid (ABA)-induced H2O2 production in leaves of maize (Zea mays L.) plants were examined, using 3,3-diaminobenzidine (DAB) and CeCl3 staining, respectively, and the relationship between ABA-induced H2O2 production and ABA-induced subcellular activities of antioxidant enzymes was studied. H2O2 generated in response to ABA treatment was detected within 0.5 h in major veins of the leaves and maximized at about 2–4 h. In mesophyll and bundle sheath cells, ABA-induced H2O2 accumulation was observed only in apoplast, and the greatest accumulation occurred in the walls of mesophyll cells facing large intercellular spaces. Meanwhile, ABA treatment led to a significant increase in the activities of the leaf chloroplastic and cytosolic antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), the O 2 scavenger Tiron and the H2O2 scavenger dimethylthiourea (DMTU) almost completely arrested the increase in the activities of these antioxidant enzymes. Our results indicate that the accumulation of apoplastic H2O2 is involved in the induction of the chloroplastic and cytosolic antioxidant enzymes. Moreover, an oxidative stress induced by paraquat (PQ), which generates O 2 and then H2O2 in chloroplasts, also up-regulated the activities of the chloroplastic and cytosolic antioxidant enzymes, and the up-regulation was blocked by the pretreatment with Tiron and DMTU. These data suggest that H2O2 produced at a specific cellular site could coordinate the activities of antioxidant enzymes in different subcellular compartments.  相似文献   

2.
Our previous results have demonstrated that both nitric oxide (NO) and hydrogen peroxide (H2O2) are involved in the promotion of adventitious root development in marigold (Tagetes erecta L.). However, not much is known about the intricate molecular network of adventitious root development triggered by NO and H2O2. In this study, the involvement of calcium (Ca2+) and calmodulin (CaM) in NO- and H2O2-induced adventitious rooting in marigold was investigated. Exogenous Ca2+ was capable of promoting adventitious rooting, with a maximal biological response at 50 μM CaCl2. Ca2+ chelators and CaM antagonists prevented NO- and H2O2-induced adventitious rooting, indicating that both endogenous Ca2+ and CaM may play crucial roles in the adventitious rooting induced by NO and H2O2. NO and H2O2 treatments increased the endogenous content of Ca2+ and CaM, suggesting that NO and H2O2 enhanced adventitious rooting by stimulating the endogenous Ca2+ and CaM levels. Moreover, treatment with Ca2+ enhanced the endogenous levels of NO and H2O2. Additionally, Ca2+ might be involved as an upstream signaling molecule for CaM during NO- and H2O2-induced rooting. Altogether, the results suggest that both Ca2+ and CaM are two downstream signaling molecules in adventitious rooting induced by NO and H2O2.  相似文献   

3.
Of various metal ions (Ca2+, Cr3+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+ and Zn2+) added to the culture medium of Agrobacterium tumefaciens at 1 mM, only Ca2+ increased Coenzyme Q10 (CoQ10) content in cells without the inhibition of cell growth. In a pH-stat fed-batch culture, supplementation with 40 mM of CaCO3 increased the specific CoQ10 content and oxidative stress by 22.4 and 48%, respectively. Also, the effect of Ca2+ on the increase of CoQ10 content was successfully verified in a pilot-scale (300 L) fermentor. In this study, the increased oxidative stress in A. tumefaciens culture by the supplementation of Ca2+ is hypothesized to stimulate the increase of specific CoQ10 content in order to protect the membrane against lipid peroxidation. Our results improve the understanding of Ca2+ effect on CoQ10 biosynthesis in A. tumefaciens and should contribute to better industrial production of CoQ10 by biological processes.  相似文献   

4.
Barley seedlings were pre-treated with 1 and 5 μM H2O2 for 2 d and then supplied with water or 150 mM NaCl for 4 and 7 d. Exogenous H2O2 alone had no effect on the proline, malondialdehyde (MDA) and H2O2 contents, decreased catalase (CAT) activity and had no effect on peroxidase (POX) activity. Three new superoxide dismutase (SOD) isoenzymes appeared in the leaves as a result of 1 μM H2O2 treatment. NaCl enhanced CAT and POX activity. SOD activity and isoenzyme patterns were changed due to H2O2 pre-treatment, NaCl stress and leaf ageing. In pre-treated seedlings the rate of 14CO2 fixation was higher and MDA, H2O2 and proline contents were lower in comparison to the seedlings subjected directly to NaCl stress. Cl content in the leaves 4 and 7 d after NaCl supply increased considerably, but less in pre-treated plants. It was suggested that H2O2 metabolism is involved as a signal in the processes of barley salt tolerance.  相似文献   

5.
6.
Jiang J  Wang P  An G  Wang P  Song CP 《Plant cell reports》2008,27(2):377-385
SB203580 is a specific inhibitor of p38 mitogen-activated protein (MAP) kinase and has been widely used to investigate the physiological roles of p38 in animal and yeast cells. Here by using an epidermal strip bioassay, laser-scanning confocal microscopy and whole-cell patch clamp analysis, we assess the effects of pyridinyl imidazoles-like SB203580 on the H2O2 signaling in guard cells of Vicia faba L. The results indicated that SB203580 blocks H2O2- or ABA-induced stomatal closure, ABA-induced H2O2 generation, and decrease in K+ fluxing across plasma membrane of Vicia guard cells by application of ABA and H2O2, whereas its analog SB202474 had no effect on these events. Thus, these results suggest that activation of p38-like MAP kinase modulates guard cell ROS signaling in response to stress.  相似文献   

7.
Exposure of bovine pulmonary artery smooth muscle plasma membrane suspension with the oxidant H2O2 (1 mM) stimulated Ca2+ATPase activity. We sought to determine the role of matrix metalloprotease-2 (MMP-2) in stimulating Ca2+ATPase activity by H2O2 in the smooth muscle plasma membrane. The smooth muscle membrane possesses a Ca2+-dependent protease activity in the gelatin containing zymogram having an apparent molecular mass of 72 kDa. The 72 kDa protease activity was found to be inhibited by EGTA, 1: 10-phenanthroline, a2-macroglobulin and tissue inhibitor of metalloprotease-2 (TIMP-2) indicating that the Ca2+-dependent 72 kDa protease is the MMP-2. Western immunoblot studies of the membrane suspension with polyclonal antibodies of MMP-2 and TIMP-2 revealed that MMP-2 and TIMP-2, respectively, are the ambient matrix metalloprotease and the corresponding tissue inhibitor of metalloprotease in the membrane. In addition to increasing the Ca2+ATPase activity, H2O2 also enhanced the activity of the smooth muscle plasma membrane associated protease activity as evidenced by its ability to degrade14C-gelatin. The protease activity and the Ca2+ATPase activity were prevented by the antioxidant, vitamin E, indicating that the effect produced by H2O2 was due to reactive oxidant species(es). Both basal and H2O2 stimulated MMP-2 activity and Ca2+ATPase activity were inhibited by the general inhibitors of matrix metalloproteases: EGTA, 1: 10-phenanthroline, α2-macroglobulin and also by TIMP-2 (the specific inhibitor of MMP-2) indicating that H2O2 increased MMP-2 activity and that subsequently stimulated Ca2+ATPase activity in the plasma membrane. This was further confirmed by the following observations: (i) adding low doses of MMP-2 or H2O2 to the smooth muscle membrane suspension caused submaximal increase in Ca2+ATPase activity, and pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity; (ii) combined treatment of the membrane with low doses of MMP-2 and H2O2 augments further the Ca2+ATPase activity caused by the respective low doses of either H2O2 or MMP-2; and (iii) pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity in the membrane caused by the combined treatment of MMP-2 and H2O2.  相似文献   

8.
The effects of Ca(NO3)2 stress on biomass production, oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants were investigated. Results showed that when exposed to 80 mM Ca(NO3)2 stress, the biomass production reduction in non-grafted plants was more significant than that of grafted plants. Under Ca(NO3)2 stress, superoxide anion radical (O2) producing rate, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents of non-grafted plants roots were significantly higher than those of grafted plants, however, nitrate (NO3 ), ammonium (NH4 +) and proline contents, superoxide dismutase (SOD, EC1.15.1.1), peroxidase (POD, EC1.11.1.7), catalase (CAT, EC1.11.1.6) and arginine decarboxylase (ADC, EC 4.1.1.19) activities of grafted plants roots were significantly higher than those of non-grafted plants. Regardless of stress, free, conjugated and bound polyamine contents in roots of grafted plants were significantly higher than those of non-grafted plants. The possible roles of antioxidant enzymes, prolines and polyamines in adaptive mechanism of tomato roots to Ca(NO3)2 stress were discussed. Gu-Wen Zhang and Zheng-Lu Liu contributed equally to this work.  相似文献   

9.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

10.
The change in cytosolic free concentration of calcium ([Ca2+]cyt) plays a key role in regulating apoptosis in animal cells. In our experiment, we tried to investigate the function of Ca2+ in programmed cell death (PCD) in tobacco (Nicotiana tobacum, cultivar BY-2) protoplasts induced by salt stress. An obvious increase in [Ca2+]cyt was observed a few minutes after treatment and the onset of a decrease in mitochondrial membrane potential (ΔΨm) was also observed before the appearance of PCD, pre-treatment of protoplasts with EGTA or LaCl3 effectively retarded the increase in [Ca2+]cyt, which was concomitant with the decrease in the percentage of cell death and higher ΔΨm, pre-treatment with cyclosporine A (CsA) also effectively retarded the increase in [Ca2+]cyt, the decrease in ΔΨm and the onset of PCD. All these results suggest that Ca2+ is a necessary element in regulating PCD and the increase in [Ca2+]cyt and the opening of mitochondrial permeability transition pore (MPTP) could promote each other in regulating PCD in tobacco protoplasts induced by salt stress.Jiusheng Lin and Yuan Wang-These authors contributed equally for this work.  相似文献   

11.
The Ca2+-independent phospholipase A2 (iPLA2) subfamily of enzymes is associated with arachidonic acid (AA) release and the subsequent increase in fatty acid turnover. This phenomenon occurs not only during apoptosis but also during inflammation and lymphocyte proliferation. In this study, we purified and characterized a novel type of iPLA2 from bovine brain. iPLA2 was purified 4,174-fold from the bovine brain by a sequential process involving DEAE-cellulose anion exchange, phenyl-5PW hydrophobic interaction, heparin-Sepharose affinity, Sephacryl S-300 gel filtration, Mono S cation exchange, Mono Q anion exchange, and Superose 12 gel filtration. A single peak of iPLA2 activity was eluted at an apparent molecular mass of 155 kDa during the final Superose 12 gel-filtration step. The purified enzyme had an isoelectric point of 5.3 on twodimensional gel electrophoresis (2-DE) and was inhibited by arachidonyl trifluoromethyl ketone (AACOCF3), Triton X-100, iron, and Ca2+. However, it was not inhibited by bromoenol lactone (BEL), an inhibitor of iPLA2, and adenosine triphosphate (ATP). The spot with the iPLA2 activity did not match with any known protein sequence, as determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. Altogether, these data suggest that the purified enzyme is a novel form of cytosolic iPLA2.  相似文献   

12.
Ros Barceló A 《Planta》2005,220(5):747-756
Lignification in Zinnia elegans L. stems is characterized by a burst in the production of H2O2, the apparent fate of which is to be used by xylem peroxidases for the polymerization of p-hydroxycinnamyl alcohols into lignins. A search for the sites of H2O2 production in the differentiating xylem of Z. elegans stems by the simultaneous use of optical (bright field, polarized light and epi-polarization) and electron-microscope tools revealed that H2O2 is produced on the outer-face of the plasma membrane of both differentiating (living) thin-walled xylem cells and particular (non-lignifying) xylem parenchyma cells. From the production sites it diffuses to the differentiating (secondary cell wall-forming) and differentiated lignifying xylem vessels. H2O2 diffusion occurs mainly through the continuous cell wall space. Both the experimental data and the theoretical calculations suggest that H2O2 diffusion from the sites of production might not limit the rate of xylem cell wall lignification. It can be concluded that H2O2 is produced at the plasma membrane in differentiating (living) thin-walled xylem cells and xylem parenchyma cells associated to xylem vessels, and that it diffuses to adjacent secondary lignifying xylem vessels. The results strongly indicate that non-lignifying xylem parenchyma cells are the source of the H2O2 necessary for the polymerization of cinnamyl alcohols in the secondary cell wall of lignifying xylem vessels.  相似文献   

13.
We investigated the contribution of L-, N- and P/Q-type Ca2+ channels to the [Ca2+]i changes, evoked by kainate, in the cell bodies of hippocampal neurons, using a pharmacological approach and Ca2+ imaging. Selective Ca2+ channel blockers, namely nitrendipine, ω-Conotoxin GVIA (ω-GVIA) and ω-Agatoxin IVA (ω-AgaIVA) were used. The [Ca2+]i changes evoked by kainate presented a high variability, and were abolished by NBQX, a AMPA/kainate receptor antagonist, but the N-methyl-d-aspartate (NMDA) receptor antagonist, D-AP5, was without effect. Each Ca2+ channel blocker caused differential inhibitory effects on [Ca2+]i responses evoked by kainate. We grouped the neurons for each blocker in three subpopulations: (1) neurons with responses below 60% of the control; (2) neurons with responses between 60% and 90% of the control, and (3) neurons with responses above 90% of the control. The inhibition caused by nitrendipine was higher than the inhibition caused by ω-GVIA or ω-AgaIVA. Thus, in the presence of nitrendipine, the percentage of cells with responses below 60% of the control was 41%, whereas in the case of ω-GVIA or ω-AgaIVA the values were 9 or 17%, respectively. The results indicate that hippocampal neurons differ in what concerns their L-, N- and P/Q- type Ca2+ channels activated by stimulation of the AMPA/kainate receptors. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

14.
Previous research has confirmed that cobalt ion and dimethylbenzimidazole (DMBI) are the precursors of vitamin B12 biosynthesis, and porphobilinogen synthase (PBG synthase) is a zinc-requiring enzyme. In this paper, the effects of Zn2+, Co2+ and DMBI on vitamin B12 production by Pseudomonas denitrificans in shake flasks were studied. Present experimental results demonstrated that the addition of the above mentioned three components to the fermentation medium could significantly stimulate the biosynthesis of vitamin B12. The concentrations of zinc sulphate, cobaltous chloride and DMBI in the fermentation medium were further optimized with rotatable orthogonal central composite design and statistical analysis by Data Processing System (DPS) software. As a result, vitamin B12 production was increased from 69.36 ± 0.66 to 78.23 ± 0.92 μg/ml.  相似文献   

15.
The Ca2+-conducting pathway of myocytes isolated from the cricket lateral oviduct was investigated by means of the whole-cell patch clamp technique. In voltage-clamp configuration, two types of whole cell inward currents were identified. One was voltage-dependent, initially activated at –40 mV and reaching a maximum at 10 mV with the use of 140 mM Cs2+-aspartate in the patch pipette and normal saline in the bath solution. Replacement of the external Ca2+ with Ba2+ slowed the current decay. Increasing the external Ca2+ or Ba2+ concentration increased the amplitude of the inward current and the current–voltage (I–V) relationship was shifted as expected from a screening effect on negative surface charges. The inward current could be carried by Na+ in the absence of extracellular Ca2+. Current carried by Na+ (I Na) was almost completely blocked by the dihydropyridine Ca2+ channel antagonist, nifedipine, suggesting that the I Na is through voltage-dependent L-type Ca2+ channels. The other inward current is voltage-independent and its I–V relationship was linear between –100 mV to 0 mV with a slight inward rectification at more hyperpolarizing membrane potentials when 140 mM Cs+-aspartate and 140 mM Na+-gluconate were used in the patch pipette and in the bath solution, respectively. A similar current was observed even when the external Na+ was replaced with an equimolar amount of K+ or Cs+, or 50 mM Ca2+ or Ba2+. When the osmolarity of the bath solution was reduced by removing mannitol from the bath solution, the inward current became larger at negative potentials. The I–V relationship for the current evoked by the hypotonic solution also showed a linear relationship between –100 mV to 0 mV. Bath application of Gd3+ (10 M) decreased the inward current activated by membrane hyperpolarization. These results clearly indicate that the majority of current activated by a membrane hyperpolarization is through a stretch-activated Ca2+-permeable nonselective cation channel (NSCC). Here, for the first time, we have identified voltage-dependent L-type Ca2+ channel and stretch-activated Ca2+-permeable NSCCs from enzymatically isolated muscle cells of the cricket using the whole-cell patch clamp recording technique.Abbreviations I Ca Ca2+ current - I Na Na+ current - I–V current–voltage - NSCC nonselective cation channel Communicated by G. Heldmaier  相似文献   

16.
Effects of exogenous H2O2 application on vinblastine (VBL) and its precursors, vindoline (VIN), catharanthine (CAT) and α-3′,4′-anhydrovinblastine (AVBL), were measured in Catharanthus roseus seedlings in order to explore possible correlation of VBL formation with oxidative stress. VBL accumulation has previously been shown to be regulated by an in vitro H2O2-dependent peroxidase (POD)-like synthase. Experimental exposure of plants to different concentrations of H2O2 showed that endogenous H2O2 and alkaloid concentrations in leaves were positively elevated. The time-course variations of alkaloid concentrations and redox state, reflected by the concentrations of H2O2, ascorbic acid (AA), oxidative product of glutathione (GSSG) and POD activity, were significantly altered due to H2O2 application. The further correlation analysis between alkaloids and redox status indicated that VBL production was tightly correlated with redox status. These results provide a new link between VBL metabolisms and redox state in C. roseus.  相似文献   

17.
Our understanding of vascular endothelial cell physiology is based on studies of endothelial cells cultured from various vascular beds of different species for varying periods of time. Systematic analysis of the properties of endothelial cells from different parts of the vasculature is lacking. Here, we compare Ca2+ homeostasis in primary cultures of endothelial cells from human internal mammary artery and saphenous vein and how this is modified by hypoxia, an inevitable consequence of bypass grafting (2.5% O2, 24 h). Basal [Ca2+] i and store depletion-mediated Ca2+ entry were significantly different between the two cell types, yet agonist (ATP)–mediated mobilization from endoplasmic reticulum stores was similar. Hypoxia potentiated agonist-evoked responses in arterial, but not venous, cells but augmented store depletion-mediated Ca2+ entry only in venous cells. Clearly, Ca2+ signaling and its remodeling by hypoxia are strikingly different in arterial vs. venous endothelial cells. Our data have important implications for the interpretation of data obtained from endothelial cells of varying sources.  相似文献   

18.
Plant calcium pumps, similarly to animal Ca2+ pumps, belong to the superfamily of P-type ATPase comprising also the plasma membrane H+-ATPase of fungi and plants, Na+/K+ ATPase of animals and H+/K+ ATPase of mammalian gastric mucosa. According to their sensitivity to calmodulin the plant Ca2+-ATPases have been divided into two subgroups: type IIA (homologues of animal SERCA) and type IIB (homologues of animal PMCA). Regardless of the similarities in a protein sequence, the plant Ca2+ pumps differ from those in animals in their cellular localization, structure and sensitivity to inhibitors. Genomic investigations revealed multiplicity of plant Ca2+-ATPases; they are present not only in the plasma membranes and ER but also in membranes of most of the cell compartments, such as vacuole, plastids, nucleus or Golgi apparatus. Studies using yeast mutants made possible the functional and biochemical characterization of individual plant Ca2+-ATMPases. Plant calcium pumps play an essential role in signal transduction pathways, they are responsible for the regulation of [Ca2+] in both cytoplasm and endomembrane compartments. These Ca2+-ATPases appear to be involved in plant adaptation to stress conditions, like salinity, chilling or anoxia.  相似文献   

19.
Supplementation with CaCl2·2H2O (50 mg l−1) or CuSO4·5H2O (10 mg l−1) improved mannitol production by Candida magnoliae by 14.5 and 18.6% (25 and 32 g/L), respectively. When used in combination, they acted synergistically: Ca2+ decreased the intracellular concentration of mannitol 30%, whereas Cu2+ increased the intracellular activity of mannitol dehydrogenase 1.6-times more than control. Ca2+ probably works by altering the permeability of cells to mannitol, whereas, Cu2+ increases the activity of an enzyme responsible for mannitol biosynthesis.  相似文献   

20.
Summary Calcium binding protein-1 (CaBP1) is a calmodulin like protein shown to modulate Ca2+ channel activities. Here, we explored the functions of long and short spliced CaBP1 variants (L- and S-CaBP1) in modulating stimulus-secretion coupling in primary cultured bovine chromaffin cells. L- and S-CaBP1 were cloned from rat brain and fused with yellow fluorescent protein at the C-terminal. When expressed in chromaffin cells, wild-type L- and S-CaBP1s could be found in the cytosol, plasma membrane and a perinuclear region; in contrast, the myristoylation-deficient mutants were not found in the membrane. More than 20 and 70% of Na+ and Ca2+ currents, respectively, were inhibited by wild-type isoforms but not myristoylation-deficient mutants. The [Ca2+] i response evoked by high K+ buffer and the exocytosis elicited by membrane depolarizations were inhibited only by wild-type isoforms. Neuronal Ca2+ sensor-1 and CaBP5, both are calmodulin-like proteins, did not affect Na+, Ca2+ currents, and exocytosis. When expressed in cultured cortical neurons, the [Ca2+] i responses elicited by high-K+ depolarization were inhibited by CaBP1 isoforms. In HEK293T cells cotransfected with N-type Ca2+ channel and L-CaBP1, the current was reduced and activation curve was shifted positively. These results demonstrate the importance of CaBP1s in modulating the stimulus-secretion coupling in excitable cells. M.-L. Chen and Y.-C. Chen contributed equally to this study  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号