首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To study the impact of assimilable nitrogen, biotin and their interaction on growth, fermentation rate and volatile formation by Saccharomyces. METHODS AND RESULTS: Fermentations of synthetic grape juice media were conducted in a factorial design with yeast assimilable nitrogen (YAN) (60 or 250 mg l(-1)) and biotin (0, 1 or 10 microg l(-1)) as variables. All media contained 240 g l(-1) glucose + fructose (1 : 1) and were fermented using biotin-depleted Saccharomyces cerevisiae strains EC1118 or UCD 522. Both strains exhibited weak growth and sluggish fermentation rates without biotin. Increased nitrogen concentration resulted in higher maximum fermentation rates, while adjusting biotin from 1 to 10 microg l(-1) had no effect. Nitrogen x biotin interactions influenced fermentation time, production of higher alcohols and hydrogen sulfide (H(2)S). Maximum H(2)S production occurred in the medium containing 60 mg l(-1) YAN and 1 microg l(-1) biotin. CONCLUSIONS: Nitrogen x biotin interactions affect fermentation time and volatile production by Saccharomyces depending on strain. Biotin concentrations sufficient to complete fermentation may affect the organoleptic impact of wine. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the necessity to consider nutrient interactions when diagnosing problem fermentations.  相似文献   

2.
AIMS: To study the effect of the addition of different nitrogen sources at high sugar concentration in the tequila fermentation process. METHODS AND RESULTS: Fermentations were performed at high sugar concentration (170 g l(-1)) using Agave tequilana Weber blue variety with and without added nitrogen from different sources (ammonium sulfate; glutamic acid; a mixture of ammonium sulfate and amino acids) during the exponential phase of growth. All the additions increased the fermentation rate and alcohol efficiency. The level of synthesis of volatile compounds depended on the source added. The concentration of amyl alcohols and isobutanol were decreased while propanol and acetaldehyde concentration increased. CONCLUSIONS: The most efficient nitrogen sources for fermentation rate were ammonium sulfate and the mixture of ammonium sulfate and amino acids. The level of volatile compounds produced depended upon types of nitrogen. The synthesis of some volatile compounds increased while others decreased with nitrogen addition. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of nitrogen could be a strategy for improving the fermentation rate and efficiency in the tequila fermentation process at high sugar Agave tequilana concentration. Furthermore, the sensory quality of the final product may change because the synthesis of the volatile compounds is modified.  相似文献   

3.
AIMS: To study the effects of assimilable nitrogen concentration on growth profile and on fermentation kinetics of Saccharomyces cerevisiae. METHODS AND RESULTS: Saccharomyces cerevisiae was grown in batch in a defined medium with glucose (200 g l(-1)) as the only carbon and energy source, and nitrogen supplied as ammonium sulphate or phosphate forms under different concentrations. The initial nitrogen concentration in the media had no effect on specific growth rates of the yeast strain PYCC 4072. However, fermentation rate and the time required for completion of the alcoholic fermentation were strongly dependent on nitrogen availability. At the stationary phase, the addition of ammonium was effective in increasing cell population, fermentation rate and ethanol. CONCLUSIONS: The yeast strain required a minimum of 267 mg N l(-1) to attain complete dryness of media, within the time considered for the experiments. Lower levels were enough to support growth, although leading to sluggish or stuck fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings reported here contribute to elucidate the role of nitrogen on growth and fermentation performance of wine yeast. This information might be useful to the wine industry where excessive addition of nitrogen to prevent sluggish or stuck fermentation might have a negative impact on wine stability and quality.  相似文献   

4.
Hydrogen sulfide (H2S) is a powerful aroma compound largely produced by yeast during fermentation. Its occurrence in wines and other fermented beverages has been associated with off-odors described as rotten egg and/or sewage. While the formation of hydrogen sulfide (H2S) during fermentation has been extensively studied, it is the final H2S content of wine that is actually linked to potential off-odors. Nevertheless, factors determining final H2S content of wine have received little attention, and it is commonly assumed that high H2S-forming fermentations will result in high final concentrations of H2S. However, a clear relationship has never been established. In this report, we investigated the contribution of yeast strain and nitrogen addition to H2S formation during fermentation and its consequent occurrence the resulting wines. Five commercial Saccharomyces cerevisiae wine yeast strains were used to ferment a Chardonnay juice containing 110 mg/l of YAN (yeast assimilable nitrogen), supplemented with di-ammonium phosphate (DAP) to increase YAN concentration to moderate (260 mg/l) and high (410 mg/l) levels. In contrast to the widely reported decrease in H2S production in response to DAP addition, a non-linear relationship was found such that moderate DAP supplementation resulted in a remarkable increase in H2S formation by each of the five wine yeasts. H2S content of the finished wine was affected by yeast strain, YAN, and fermentation vigor. However, we did not observe a correlation between concentration of H2S in the finished wines and H2S produced during fermentation, with low-forming fermentations often having relatively high final H2S and vice versa. Management of H2S in wine through nitrogen supplementation requires knowledge of initial YAN and yeast H2S characteristics.  相似文献   

5.
AIMS: The study of the fermentation performance of Saccharomyces cerevisiae strains under high sugar stress during the vinification of partially dried grapes. METHODS AND RESULTS: Microvinification of partially dried grape must with sugar concentration of 35 degrees Brix was performed using four commercial strains to carry out alcoholic fermentation. A traditional red vinification without nutrients addition was applied. Yeasts displayed different efficiency to convert sugar in ethanol and varied in glycerol yield. Sugar consumption and ethanol level were attested at 80-87% and 143.5-158.0 g l(-1) respectively. High correlation between sugar and assimilable nitrogen consumption rate was observed. Statistical treatment of data by principal component analysis highlighted the different behaviours that strains exhibited in regard to the production of higher alcohols and other compounds important to wine quality. CONCLUSIONS: Saccharomyces cerevisiae strains displayed appreciable capability to overcome osmotic stress and to yield ethanol fermenting high sugar concentration grape must in winemaking condition. SIGNIFICANCE AND IMPACT OF THE STUDY: The results provided insights on the strain contribution to wine quality subordinate to stress condition. This investigation is of applicative interest for winemaking and processing industry that use high sugar concentration musts.  相似文献   

6.
Aims:  The aim of this study was to evaluate the impact of supplementation by diammonium phosphate (DAP) on hydrogen sulfide (H2S) production, when DAP given either prior to fermentation or during the early stationary growth phase of yeast. Methods and Results:  Three contrasting Saccharomyces cerevisiae wine strains were used to ferment synthetic grape juice (GJ) containing 67 mg l?1 of initial yeast assimilable nitrogen (YAN), supplied either as DAP or as mixture of amino acids. Sufficient DAP was added either prior to or 72 h after the initiation of fermentation to achieve a final YAN concentration of 267 mg l?1. Supplementation prior to fermentation stimulated H2S production. The results obtained in model solutions were validated using natural GJ. Conclusion:  The timing of DAP supplementation is critical for ensuring that fermentation proceeds without excessive release of H2S. Significance and Impact of the Study:  This result has important implications for the wine‐making industry, because it highlights the value of determining the initial nitrogen level of a GJ. It raises awareness of the dependence of wine quality on the correct timing of DAP supplementation.  相似文献   

7.
The correlation between alcoholic fermentation rate, measured as carbon dioxide (CO2) evolution, and the rate of hydrogen sulfide (H2S) formation during wine production was investigated. Both rates and the resulting concentration peaks in fermentor headspace H2S were directly impacted by yeast assimilable nitrogenous compounds in the grape juice. A series of model fermentations was conducted in temperature-controlled and stirred fermentors using a complex model juice with defined concentrations of ammonium ions and/or amino acids. The fermentation rate was measured indirectly by noting the weight loss of the fermentor; H2S was quantitatively trapped in realtime using a pre-calibrated H2S detection tube which was inserted into a fermentor gas relief port. Evolution rates for CO2 and H2S as well as the relative ratios between them were calculated. These fermentations confirmed that total sulfide formation was strongly yeast strain-dependent, and high concentrations of yeast assimilable nitrogen did not necessarily protect against elevated H2S formation. High initial concentrations of ammonium ions via addition of diammonium phosphate (DAP) caused a higher evolution of H2S when compared with a non-supplemented but nondeficient juice. It was observed that the excess availability of a certain yeast assimilable amino acid, arginine, could result in a more sustained CO2 production rate throughout the wine fermentation. The contribution of yeast assimilable amino acids from conventional commercial yeast foods to lowering of the H2S formation was marginal.  相似文献   

8.
Surveys conducted worldwide have shown that a significant proportion of grape musts are suboptimal for yeast nutrients, especially assimilable nitrogen. Nitrogen deficiencies are linked to slow and stuck fermentations and sulphidic off-flavour formation. Nitrogen supplementation of grape musts has become common practice; however, almost no information is available on the effects of nitrogen supplementation on wine flavour. In this study, the effect of ammonium supplementation of a synthetic medium over a wide range of nitrogen values on the production of volatile and non-volatile compounds by two high-nitrogen-demand wine fermentation strains of Saccharomyces cerevisiae was determined. To facilitate this investigation, a simplified chemically defined medium that resembles the nutrient composition of grape juice was used. Analysis of variance revealed that ammonium supplementation had significant effects on the concentration of residual sugar, L-malic acid, acetic acid and glycerol but not the ethanol concentration. While choice of yeast strain significantly affected half of the aroma compounds measured, nitrogen concentrations affected 23 compounds, including medium-chain alcohols and fatty acids and their esters. Principal component analysis showed that branched-chain fatty acids and their esters were associated with low nitrogen concentrations, whereas medium-chain fatty esters and acetic acid were associated with high nitrogen concentrations.  相似文献   

9.
AIMS: To identify and compare the volatile compounds associated with maize dough samples prepared by spontaneous fermentation and by the use of added starter cultures in Ghana. METHODS AND RESULTS: The starter cultures examined were Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei. For identification of aroma volatiles, extracts by the Likens-Nickerson simultaneous distillation and extraction technique were analysed by gas chromatography-mass spectrometry (GC-MS) and using a trained panel of four judges by GC-Olfactometry (GC-sniffing). Compounds identified by GC-MS in maize dough samples after 72 h of fermentation included 20 alcohols, 22 carbonyls, 11 esters, seven acids, a furan and three phenolic compounds. Of the total 64 volatile compounds, 51 were detected by GC-sniffing as contributing to the aroma of the different fermented dough samples. Spontaneously fermented maize dough was characterized by higher levels of carbonyl compounds while fermentations with added L. fermentum recorded the highest concentration of acetic acid. S. cerevisiae produced higher amounts of fusel alcohols and increasing levels of esters with fermentation time and C. krusei showed similarity to L. fermentum with lower levels of most volatiles identified. CONCLUSION: The present study has given a detailed picture of the aroma compounds in fermented maize and demonstrated that the predominant micro-organisms in fermented maize dough can be used as starter cultures to modify the aroma of fermented maize dough. SIGNIFICANCE AND IMPACT OF THE STUDY: The study has documented the advantage of using starter cultures in African traditional food processing and provided a scientific background for introducing better controlled fermentations.  相似文献   

10.
Saccharomyces cerevisiae wine-producing yeast cultures grown under model winemaking conditions could be induced to liberate hydrogen sulfide (H2S) by starvation for assimilable nitrogen. The amount of H2S produced was dependent on the yeast strain, the sulfur precursor compound, the culture growth rate, and the activity of the sulfite reductase enzyme (EC 1.8.1.2) immediately before nitrogen depletion. Increased H2S formation relative to its utilization by metabolism was not a consequence of a de novo synthesis of sulfite reductase. The greatest amount of H2S was produced when nitrogen became depleted during the exponential phase of growth or during growth on amino acids capable of supporting short doubling times. Both sulfate and sulfite were able to act as substrates for the generation of H2S in the absence of assimilable nitrogen; however, sulfate reduction was tightly regulated, leading to limited H2S liberation, whereas sulfite reduction appeared to be uncontrolled. In addition to ammonium, most amino acids were able to suppress the liberation of excess H2S when added as sole sources of nitrogen, particularly for one of the strains studied. Cysteine was the most notable exception, inducing the liberation of H2S at levels exceeding that of the nitrogen-depleted control. Threonine and proline also proved to be poor substitutes for ammonium. These data suggest that any compound that can efficiently generate sulfide-binding nitrogenous precursors of organic sulfur compounds will prevent the liberation of excess H2S.  相似文献   

11.
Alcoholic fermentation by an oenological strain of Torulaspora delbrueckii in association with an oenological strain of Saccharomyces cerevisiae was studied in mixed and sequential cultures. Experiments were performed in a synthetic grape must medium in a membrane bioreactor, a special tool designed to study indirect interactions between microorganisms. Results showed that the S. cerevisiae strain had a negative impact on the T. delbrueckii strain, leading to a viability decrease as soon as S. cerevisiae was inoculated. Even for high inoculation of T. delbrueckii (more than 20× S. cerevisiae) in mixed cultures, T. delbrueckii growth was inhibited. Substrate competition and cell-to-cell contact mechanism could be eliminated as explanations of the observed interaction, which was probably an inhibition by a metabolite produced by S. cerevisiae. S. cerevisiae should be inoculated 48 h after T. delbrueckii in order to ensure the growth of T. delbrueckii and consequently a decrease of volatile acidity and a higher isoamyl acetate production. In this case, in a medium with a high concentration of assimilable nitrogen (324 mg L?1), S. cerevisiae growth was not affected by T. delbrueckii. But in a sequential fermentation in a medium containing 176 mg L?1 initial assimilable nitrogen, S. cerevisiae was not able to develop because of nitrogen exhaustion by T. delbrueckii growth during the first 48 h, leading to sluggish fermentation.  相似文献   

12.
Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be formed as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, which can metabolize residual sugars to increase volatile acidity. Acetic acid has a negative impact on yeast fermentative performance and affects the quality of certain types of wine when present above a given concentration. In this mini-review, we present an overview of fermentation conditions and grape-must composition favoring acetic acid formation, as well the metabolic pathways leading to its formation and degradation by yeast. The negative effect of acetic acid on the fermentative performance of Saccharomyces cerevisiae will also be covered, including its role as a physiological inducer of apoptosis. Finally, currently available wine deacidification processes and new proposed solutions based on zymological deacidification by select S. cerevisiae strains will be discussed.  相似文献   

13.
AIMS: Analysis of regulators for modulated gluconic acid production under surface fermentation (SF) condition using grape must as the cheap carbohydrate source, by mutant Aspergillus niger ORS-4.410. Replacement of conventional fermentation condition by solid-state surface fermentation (SSF) for semi-continuous production of gluconic acid by pseudo-immobilization of A. niger ORS-4.410. METHODS AND RESULTS: Grape must after rectification was utilized for gluconic acid production in batch fermentation in SF and SSF processes using mutant strain of A. niger ORS-4.410. Use of rectified grape must led to the improved levels of gluconic acid production (80-85 g l(-1)) in the fermentation medium containing 0.075% (NH4)2HPO4; 0.1% KH2PO4 and 0.015% MgSO4.7H2O at an initial pH 6.6 (+/-0.1) under surface fermentation. Gluconic acid production was modulated by incorporating the 2% soybean oil, 2% starch and 1% H2O2 in fermentation medium at continuously high aeration rate (2.0 l min(-1)). Interestingly, 95.8% yield of gluconic acid was obtained when A. niger ORS-4.410 was pseudo-immobilized on cellulose fibres (bagasse) under SSF. Four consecutive fermentation cycles were achieved with a conversion rate of 0.752-0.804 g g(-1) of substrate into gluconic acid under SSF. CONCLUSIONS: Use of additives modulated the gluconic acid production under SF condition. Semi-continuous production of gluconic acid was achieved with pseudo-immobilized mycelia of A. niger ORS-4.410 having a promising yield (95.8%) under SSF condition. SIGNIFICANCE AND IMPACT OF THE STUDY: The bioconversion of grape must into modulated gluconic acid production under SSF conditions can further be employed in fermentation industries by replacing the conventional carbohydrate sources and expensive, energy consuming fermentation processes.  相似文献   

14.
Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box–Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas–liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity? ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.  相似文献   

15.
AIMS: The purpose of this work was to evaluate the effect of Helichrysum italicum extract on enterotoxin (A-D) production by Staphylococcus aureus strains. METHODS AND RESULTS: The production of enterotoxins A-D in the presence or absence of H.italicum diethyl ether extract was estimated in microtiter plates using a reversed passive latex agglutination (SET-RPLA) kit (Oxoid, Basingstoke, UK). The results indicate that, in culture medium, inhibition of staphylococcal growth and enterotoxins appeared with 250-125 microg ml(-1) of the extract. Lower concentrations of the extract (62.5-31.25 microg ml(-1)) did not affect the final viable count of Staph. aureus but reduced the production of enterotoxins B and C. CONCLUSIONS: H. italicum interferes with growth and production of enterotoxins by Staph. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY: There is considerable interest in the use of natural compounds as alternative methods to control undesirable pathogenic micro-organisms.  相似文献   

16.
Urea, ammonium, and free amino acid contents were quantified in biological aging of a young wine under two flor film forming yeast strains, Saccharomyces cerevisiae race capensis and S. cerevisiae race bayanus, and compared. Cell viability in the film was different for the two yeast strains. Thus, capensis maintained a much greater number of viable cells per surface area than bayanus and hence used greater amount of nitrogen compounds. The main source of nitrogen for the yeasts during the biological aging process was L-proline. The two yeast strains also differed in the amounts of assimilable nitrogen they utilized, in their preferences for amino acid consumption, and kinetics. To accelerate the aging process, the effect of controlled monthly aeration of the wine aged with capensis strain was investigated. The results revealed that short aeration did not appreciably increase the overall consumption of assimilable nitrogen, but consumption of some nitrogen compounds was accelerated (particularly L-proline, L-tryptophan, L-glutamic acid, ammonium ion, L-lysine, and L-arginine); the use of L-ornithine was inhibited; and GABA, L-methionine, and urea were depletes. Probably the aeration increases the aroma compounds, thereby producing wines with improved sensory properties. (c) 1997 John Wiley & Sons, Inc.  相似文献   

17.
The competition between selected or commercial killer strains of type K2 and sensitive commercial strains of Saccharomyces cerevisiae was studied under various conditions in sterile grape juice fermentations. The focus of this study was the effect of yeast inoculation levels and the role of assimilable nitrogen nutrition on killer activity. A study of the consumption of free amino nitrogen (FAN) by pure and mixed cultures of killer and sensitive cells showed no differences between the profiles of nitrogen assimilation in all cases, and FAN was practically depleted in the first 2 days of fermentation. The effect of the addition of assimilable nitrogen and the size of inoculum was examined in mixed killer and sensitive strain competitions. Stuck and sluggish wine fermentations were observed to depend on nitrogen availability when the ratio of killer to sensitive cells was low (1:10 to 1:100). A relationship between the initial assimilable nitrogen content of must and the proportion of killer cells during fermentation was shown. An indirect relationship was found between inoculum size and the percentage of killer cells: a smaller inoculum resulted in a higher proportion of killer cells in grape juice fermentations. In all cases, wines obtained with pure-culture fermentations were preferred to mixed-culture fermentations by sensory analysis. The reasons why killer cells do not finish fermentation under competitive conditions with sensitive cells are discussed.  相似文献   

18.
AIMS: To evaluate the antibacterial and free-radical scavenging (FRS) activities of propolis collected from three different areas of Sonoran Desert in northwestern Mexico [Pueblo de Alamos (PAP), Ures (UP) and Caborca (CP)]. METHODS AND RESULTS: The antibacterial and FRS activities of Sonoran propolis were determined by the broth microdilution method and the DPPH (1,1-diphenyl-2-picrylhydracyl) assay, respectively. Propolis samples had antibacterial activity against only Gram-positive bacteria. The UP sample showed the highest antibacterial activity against Staphylococcus aureus [minimal inhibitory concentration (MIC) 100 microg ml(-1)] in a concentration-dependent manner (UP > CP > PAP). Caffeic acid phenethyl ester (CAPE), a UP propolis constituent, had very high growth-inhibitory activity towards Gram-positive bacteria, particularly against S. aureus (MIC 0.1 mmol l(-1)). To our knowledge, this is the first study showing a strong antibacterial activity of CAPE against S. aureus. Additionally, propolis CP exhibited high FRS activity (86% +/- 0.3 at 100 microg ml(-1)) comparable with those of the reference antioxidants vitamin C (87.4% +/- 1.7 at 70 micromol l(-1)) and BHT (66.07% +/- 0.76 at 140 micromol l(-1)). The propolis compounds CAPE and rutin showed high FRS activity (90.4% +/- 0.2 and 88.5% +/- 0.8 at 70 micromol l(-1), respectively). CONCLUSIONS: Sonoran propolis UP and CAPE had strong antibacterial activity against S. aureus. In addition, propolis CP showed potent FRS activity comparable with those of vitamin C and BHT. SIGNIFICANCE AND IMPACT OF THE STUDY: The strong antibacterial and antioxidant properties of Sonoran propolis and some of its constituents support further studies on the clinical applications of this natural bee product against S. aureus and several oxidative damage-related diseases.  相似文献   

19.
While unfermented grape must contains approximately equal amounts of the two hexoses glucose and fructose, wine producers worldwide often have to contend with high residual fructose levels (>2 gl(-1)) that may account for undesirable sweetness in finished dry wine. Here, we investigate the fermentation kinetics of glucose and fructose and the influence of certain environmental parameters on hexose utilisation by wine yeast. Seventeen Saccharomyces cerevisiae strains, including commercial wine yeast strains, were evaluated in laboratory-scale wine fermentations using natural Colombard grape must that contained similar amounts of glucose and fructose (approximately 110 gl(-1) each). All strains showed preference for glucose, but to varying degrees. The discrepancy between glucose and fructose utilisation increased during the course of fermentation in a strain-dependent manner. We ranked the S. cerevisiae strains according to their rate of increase in GF discrepancy and we showed that this rate of increase is not correlated with the fermentation capacity of the strains. We also investigated the effect of ethanol and nitrogen addition on hexose utilisation during wine fermentation in both natural and synthetic grape must. Addition of ethanol had a stronger inhibitory effect on fructose than on glucose utilisation. Supplementation of must with assimilable nitrogen stimulated fructose utilisation more than glucose utilisation. These results show that the discrepancy between glucose and fructose utilisation during fermentation is not a fixed parameter but is dependent on the inherent properties of the yeast strain and on the external conditions.  相似文献   

20.
A rapid screening method for the evaluation of the major fermentation products of Saccharomyces wine yeasts was developed using Fourier transform infrared spectroscopy and principal component factor analysis. Calibration equations for the quantification of volatile acidity, glycerol, ethanol, reducing sugar and glucose concentrations in fermented Chenin blanc and synthetic musts were derived from the Fourier transform infrared spectra of small-scale fermentations. The accuracy of quantification of volatile acidity in both Chenin blanc and synthetic must was excellent, and the standard error of prediction was 0.07 g l(-1) and 0.08 g l(-1), respectively. The respective standard error of prediction in Chenin blanc and synthetic musts for ethanol was 0.32% v/v and 0.31% v/v, for glycerol was 0.38 g l(-1) and 0.32 g l(-1), for reducing sugar in Chenin blanc must was 0.56 g l(-1) and for glucose in synthetic must was 0.39 g l(-1). These values were in agreement with the accuracy obtained by the respective reference methods used for the quantification of the components. The screening method was applied to quantify the fermentation products of glycerol-overproducing hybrid yeasts and commercial wine yeasts. Principal component factor analysis of the fermentation data facilitated an overall comparison of the fermentation profiles (in terms of the components tested) of the strains. The potential of Fourier transform infrared spectroscopy as a tool to rapidly screen the fermentative properties of wine yeasts and to speed up the evaluation processes in the initial stages of yeast strain development programs is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号