首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultimate goal of genome research on the model flowering plant Arabidopsis thaliana is the identification of all of the genes and understanding their functions. A major step towards this goal, the genome sequencing project, is nearing completion; however, functional studies of newly discovered genes have not yet kept up to this pace. Recent progress in large-scale insertional mutagenesis opens new possibilities for functional genomics in Arabidopsis. The number of T-DNA and transposon insertion lines from different laboratories will soon represent insertions into most Arabidopsis genes. Vast resources of gene knockouts are becoming available that can be subjected to different types of reverse genetics screens to deduce the functions of the sequenced genes.  相似文献   

2.
病毒诱导的基因沉默技术及其在植物中的研究进展   总被引:1,自引:0,他引:1  
病毒诱导的基因沉默(virus-induced gene silencing,VIGS)是近年来发现的一种转录后基因沉默现象,是植物抵抗病毒侵染的一种自然机制。现已被开发为快速鉴定植物基因功能的一种反向遗传学新技术。与传统的植物转基因技术相比,VIGS无需构建转基因植株,而且具有操作简便、获得表型快速等优点,目前已广泛应用于与植物抗病、逆境胁迫、细胞信号转导以及生长发育等相关基因功能的研究。该文就VIGS技术的作用机理、主要操作规程、在植物基因功能研究方面的应用以及存在的问题进行综述。  相似文献   

3.
Transposon tagging is a useful tool for biological studies. Transposon insertions have been used to obtain new mutants which are extremely helpful in understanding gene function. These insertions immediately provide a means to isolate the corresponding genes. Transposon tagging has also been used to clone genes previously defined by point mutations. In addition, transposon insertions into cloned genes that lack mutations can be generated to facilitate functional analysis. The maize Ac/Ds transposon elements are known to transpose to local sites with high frequencies and have been shown to function in several dicots. To generate a collection of Ds elements for the purpose of targeted insertional mutagenesis of mapped genes in Arabidopsis, we have mapped 44 Ds insertions by simple sequence length polymorphism (SSLP). Because the Arabidopsis genome project is advancing rapidly, many genes will be discovered whose functions are unknown. The mapped 44 Ds insertions will be a useful resource for post-genome analysis of gene functions in Arabidopsis.  相似文献   

4.
5.
6.
7.
RNA interference (RNAi) is a powerful tool for functional gene analysis, which has been successfully used to down-regulate the levels of specific target genes, enabling loss-of-function studies in living cells. Hairpin (hp) RNA expression cassettes are typically constructed on binary plasmids and delivered into plant cells by Agrobacterium-mediated genetic transformation. Realizing the importance of RNAi for basic plant research, various vectors have been developed for RNAi-mediated gene silencing, allowing the silencing of single target genes in plant cells. To further expand the collection of available tools for functional genomics in plant species, we constructed a set of modular vectors suitable for hpRNA expression under various constitutive promoters. Our system allows simple cloning of the target gene sequences into two distinct multicloning sites and its modular design provides a straightforward route for replacement of the expression cassette's regulatory elements. More importantly, our system was designed to facilitate the assembly of several hpRNA expression cassettes on a single plasmid, thereby enabling the simultaneous suppression of several target genes from a single vector. We tested the functionality of our new vector system by silencing overexpressed marker genes (green fluorescent protein, DsRed2, and nptII) in transgenic plants. Various combinations of hpRNA expression cassettes were assembled in binary plasmids; all showed strong down-regulation of the reporter genes in transgenic plants. Furthermore, assembly of all three hpRNA expression cassettes, combined with a fourth cassette for the expression of a selectable marker, resulted in down-regulation of all three different marker genes in transgenic plants. This vector system provides an important addition to the plant molecular biologist's toolbox, which will significantly facilitate the use of RNAi technology for analyses of multiple gene function in plant cells.  相似文献   

8.
9.
Summary Virus-induced gene silencing (VIGS) is an extremely powerful tool for plant functional genomics. We used Tobacco rattle virus (TRV)-derived VIGS vectors expressed from binary vectors within Agrobacterium to induce RNA silencing in plants. Leaf infiltration is the most common method of agroinoculation used for VIGS but this method has limitations as it is laborious for large-scale screening and some plants are difficult to infiltrate. Here we have developed a novel and simple method of agroinoculation, called 'agrodrench', where soil adjacent to the plant root is drenched with an Agrobacterium suspension carrying the TRV-derived VIGS vectors. By agrodrench we successfully silenced the expression of phytoene desaturase (PDS), a 20S proteasome subunit (PB7) or Mg-protoporphyrin chelatase (Chl H) encoding genes in Nicotiana benthamiana and in economically important crops such as tomato, pepper, tobacco, potato, and Petunia, all belonging to the Solanaceae family. An important aspect of agrodrench is that it can be used for VIGS in very young seedlings, something not possible by the leaf infiltration method, which usually requires multiple fully expanded leaves for infiltration. We also demonstrated that VIGS functioned to silence target genes in plant roots. The agrodrench method of agroinoculation was more efficient than the leaf infiltration method for VIGS in roots. Agrodrench will facilitate rapid large-scale functional analysis of cDNA libraries and can also be applied to plants that are not currently amenable to VIGS technology by conventional inoculation methods.  相似文献   

10.
11.
12.
13.
Insertional mutagenesis and gene silencing are efficient tools for the determination of gene function. In contrast to gain- or loss-of-function approaches, RNA interference (RNAi)-induced gene silencing can possibly silence multigene families and homoeologous genes in polyploids. This is of great importance for functional studies in hexaploid wheat (Triticum aestivum), where most of the genes are present in at least three homoeologous copies and conventional insertional mutagenesis is not effective. We have introduced into bread wheat double-stranded RNA-expressing constructs containing fragments of genes encoding Phytoene Desaturase (PDS) or the signal transducer of ethylene, Ethylene Insensitive 2 (EIN2). Transformed plants showed phenotypic changes that were stably inherited over at least two generations. These changes were very similar to mutant phenotypes of the two genes in diploid model plants. Quantitative real-time polymerase chain reaction revealed a good correlation between decreasing mRNA levels and increasingly severe phenotypes. RNAi silencing had the same quantitative effect on all three homoeologous genes. The most severe phenotypes were observed in homozygous plants that showed the strongest mRNA reduction and, interestingly, produced around 2-fold the amount of small RNAs compared to heterozygous plants. This suggests that the effect of RNAi in hexaploid wheat is gene-dosage dependent. Wheat seedlings with low mRNA levels for EIN2 were ethylene insensitive. Thus, EIN2 is a positive regulator of the ethylene-signaling pathway in wheat, very similar to its homologs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Our data show that RNAi results in stably inherited phenotypes and therefore represents an efficient tool for functional genomic studies in polyploid wheat.  相似文献   

14.
植物转基因沉默与消除   总被引:7,自引:0,他引:7  
植物基因工程研究是希望获得高稳定表达的转基因植株,而转基因沉默现象却限制了转基因植物的应用前景,基因沉默的机制是多方面的,包括转基因多拷贝之间的异位配对,转基因序列的甲基化,插入位点在染色体结构上的改变及转录后的衰退调控等,研究外源基因的失活原因及寻找相应的策略控制失活,对于植物基因工程的发展有着重要的意义。  相似文献   

15.
Reverse genetics using insertional mutagenesis is an efficient experimental strategy for assessing gene functions. The maize Enhancer-Inhibitor (En-I) transposable element system was used to develop an effective reverse genetics strategy in Arabidopsis based on transposons. To generate insertion mutations in a specific chromosomal region we developed a strategy for local transposition mutagenesis. A small population of 960 plants, containing independent I transpositions was used to study local mutagenesis on chromosome IV of Arabidopsis. A total of 15 genes, located on chromosome IV, were tested for I insertions and included genes identified by the European ESSA I sequencing programme. These genes were of particular interest since homologies to other genes and gene families were identified, but their exact functions were unknown. Somatic insertions were identified for all genes tested in a few specific plants. Analysis of these progeny plants over several generations revealed that the ability to generate somatic insertions in the target gene were heritable. These genotypes that show high levels of somatic insertions can be used to identify germinal insertions in the progeny.  相似文献   

16.
RNAi for plant functional genomics   总被引:9,自引:0,他引:9  
A major challenge in the post-genome era of plant biology is to determine the functions of all the genes in the plant genome. A straightforward approach to this problem is to reduce or knock out expression of a gene with the hope of seeing a phenotype that is suggestive of its function. Insertional mutagenesis is a useful tool for this type of study, but it is limited by gene redundancy, lethal knock-outs, nontagged mutants and the inability to target the inserted element to a specific gene. RNA interference (RNAi) of plant genes, using constructs encoding self-complementary 'hairpin' RNA, largely overcomes these problems. RNAi has been used very effectively in Caenorhabditis elegans functional genomics, and resources are currently being developed for the application of RNAi to high-throughput plant functional genomics.  相似文献   

17.
18.
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T‐DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene‐rich regions, resulting in direct gene knockout or activation of genes within 20–30 kb up‐ and downstream of the T‐DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T‐DNA‐tagged rice mutant population. We also discuss important features of T‐DNA activation‐ and knockout‐tagging and promoter‐trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high‐throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.  相似文献   

19.
Two of the major challenges in functional genomics are to identify genes that play a key role in biological processes, and to elucidate the biological role of the large numbers of genes whose function is poorly characterized or still completely unknown. In this study, a combination of large-scale expressed sequence tag sequencing, high-throughput gene silencing and visual phenotyping was used to identify genes in which partial inhibition of expression leads to marked phenotypic changes, mostly on leaves. Three normalized tobacco (Nicotiana tabacum) cDNA libraries were prepared directly in a binary vector using different tissues of tobacco as an RNA source, randomly sequenced and clustered. The Agrobacterium-tobacco leaf disc transformation system was used to generate sets of antisense or co-suppression transgenic tobacco plants for over 20 000 randomly chosen clones, each representing an independent cluster. After transfer to the glasshouse, transgenic plants were scored visually after 10-14 days for changes in growth, leaf form and chlorosis or necrosis. Putative hits were validated by repeating the transformation. This procedure is more stringent than the analysis of knockout mutants, because it requires that even a partial decrease in expression generates a phenotype. This procedure identified 88 validated gene/phenotype relations. These included several previously characterized gene/phenotype relationships, demonstrating the validity of the approach. For about one-third, a function could be inferred, but a loss-of-function phenotype had not been described previously. Strikingly, almost one-half of the validated genes were poorly annotated, or had no known function. For 77 of these tobacco sequences, a single or small number of potential orthologues were identified in Arabidopsis. The genes for which orthologues were identified in Arabidopsis included about one-half of the genes whose function was completely unknown. Comparison with published gene/phenotype relations for Arabidopsis knockout mutants revealed surprisingly little overlap with the present study. Our results indicate that partial gene silencing identifies novel gene/phenotype relationships, which are distinct from those uncovered by knockout screens. They also show that it is possible to perform these analyses in a crop species in which full genome sequence information is lacking, and subsequently to transfer the information to a reference species in which functional studies can be performed more effectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号