首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the finite-time synchronization and fixed-time synchronization problems of inertial memristive neural networks with time-varying delays. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, several sufficient conditions are derived to ensure finite-time synchronization of inertial memristive neural networks. Then, for the purpose of making the setting time independent of initial condition, we consider the fixed-time synchronization. A novel criterion guaranteeing the fixed-time synchronization of inertial memristive neural networks is derived. Finally, three examples are provided to demonstrate the effectiveness of our main results.  相似文献   

2.
This paper addresses the passivity problem for a class of memristor-based bidirectional associate memory (BAM) neural networks with uncertain time-varying delays. In particular, the proposed memristive BAM neural networks is formulated with two different types of memductance functions. By constructing proper Lyapunov–Krasovskii functional and using differential inclusions theory, a new set of sufficient condition is obtained in terms of linear matrix inequalities which guarantee the passivity criteria for the considered neural networks. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theoretical results.  相似文献   

3.
The paper is devoted to the investigation of synchronization for an array of linearly and diffusively coupled inertial delayed neural networks (DNNs). By placing feedback control on a small fraction of network nodes, the entire coupled DNNs can be synchronized to a common objective trajectory asymptotically. Two different analysis methods, including matrix measure strategy and Lyapunov–Krasovskii function approach, are employed to provide sufficient criteria for the synchronization control problem. Comparisons of these two techniques are given at the end of the paper. Finally, an illustrative example is provided to show the effectiveness of the obtained theoretical results.  相似文献   

4.
This paper investigates finite-time synchronization of an array of coupled neural networks via discontinuous controllers. Based on Lyapunov function method and the discontinuous version of finite-time stability theory, some sufficient criteria for finite-time synchronization are obtained. Furthermore, we propose switched control and adaptive tuning parameter strategies in order to reduce the settling time. In addition, pinning control scheme via a single controller is also studied in this paper. With the hypothesis that the coupling network topology contains a directed spanning tree and each of the strongly connected components is detail-balanced, we prove that finite-time synchronization can be achieved via pinning control. Finally, some illustrative examples are given to show the validity of the theoretical results.  相似文献   

5.
This paper addresses the stability problem on the memristive neural networks with time-varying impulses. Based on the memristor theory and neural network theory, the model of the memristor-based neural network is established. Different from the most publications on memristive networks with fixed-time impulse effects, we consider the case of time-varying impulses. Both the destabilizing and stabilizing impulses exist in the model simultaneously. Through controlling the time intervals of the stabilizing and destabilizing impulses, we ensure the effect of the impulses is stabilizing. Several sufficient conditions for the globally exponentially stability of memristive neural networks with time-varying impulses are proposed. The simulation results demonstrate the effectiveness of the theoretical results.  相似文献   

6.
This paper studies two kinds of synchronization between two discrete-time networks with time delays, including inner synchronization within each network and outer synchronization between two networks. Based on Lyapunov stability theory and linear matrix inequality (LMI), sufficient conditions for two discrete-time networks to be asymptotic stability are derived in terms of LMI. Finally numerical examples are given to illustrate the effectiveness of our derived results. The theoretical understanding provides insights into the dynamics of two or more neural networks with appropriate couplings.  相似文献   

7.
This paper concerns the problem of global exponential synchronization for a class of memristor-based Cohen–Grossberg neural networks with time-varying discrete delays and unbounded distributed delays. The drive-response set is discussed. A novel controller is designed such that the response (slave) system can be controlled to synchronize with the drive (master) system. Through a nonlinear transformation, we get an alternative system from the considered memristor-based Cohen–Grossberg neural networks. By investigating the global exponential synchronization of the alternative system, we obtain the corresponding synchronization criteria of the considered memristor-based Cohen–Grossberg neural networks. Moreover, the conditions established in this paper are easy to be verified and improve the conditions derived in most of existing papers concerning stability and synchronization for memristor-based neural networks. Numerical simulations are given to show the effectiveness of the theoretical results.  相似文献   

8.
In this paper, the synchronization problem for a class of discrete-time complex-valued neural networks with time-varying delays is investigated. Compared with the previous work, the time delay and parameters are assumed to be time-varying. By separating the real part and imaginary part, the discrete-time model of complex-valued neural networks is derived. Moreover, by using the complex-valued Lyapunov-Krasovskii functional method and linear matrix inequality as tools, sufficient conditions of the synchronization stability are obtained. In numerical simulation, examples are presented to show the effectiveness of our method.  相似文献   

9.
In this paper, we extensively study the global asymptotic stability problem of complex-valued neural networks with leakage delay and additive time-varying delays. By constructing a suitable Lyapunov–Krasovskii functional and applying newly developed complex valued integral inequalities, sufficient conditions for the global asymptotic stability of proposed neural networks are established in the form of complex-valued linear matrix inequalities. This linear matrix inequalities are efficiently solved by using standard available numerical packages. Finally, three numerical examples are given to demonstrate the effectiveness of the theoretical results.  相似文献   

10.
In this paper, the synchronization problem for delayed continuous time nonlinear complex neural networks is considered. The delay dependent state feed back synchronization gain matrix is obtained by considering more general case of time-varying delay. Using Lyapunov stability theory, the sufficient synchronization criteria are derived in terms of Linear Matrix Inequalities (LMIs). By decomposing the delay interval into multiple equidistant subintervals, Lyapunov-Krasovskii functionals (LKFs) are constructed on these intervals. Employing these LKFs, new delay dependent synchronization criteria are proposed in terms of LMIs for two cases with and without derivative of time-varying delay. Numerical examples are illustrated to show the effectiveness of the proposed method.  相似文献   

11.
This paper investigates drive-response synchronization for a class of neural networks with time-varying discrete and distributed delays (mixed delays) as well as discontinuous activations. Strict mathematical proof shows the global existence of Filippov solutions to neural networks with discontinuous activation functions and the mixed delays. State feedback controller and impulsive controller are designed respectively to guarantee global exponential synchronization of the neural networks. By using Lyapunov function and new analysis techniques, several new synchronization criteria are obtained. Moreover, lower bound on the convergence rate is explicitly estimated when state feedback controller is utilized. Results of this paper are new and some existing ones are extended and improved. Finally, numerical simulations are given to verify the effectiveness of the theoretical results.  相似文献   

12.
This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.  相似文献   

13.
一类中立型Hopfield神经网络的全局吸引集   总被引:5,自引:2,他引:3  
讨论了中立型Hopfield神经网络模型,利用矩阵谱的性质和微分不等式分析等技巧,给出了其不变集和全局吸引集的判别准则.特别地,当系统有平衡点时,我们也得到了平衡点全局稳定的判别条件.  相似文献   

14.
Hindmarsh-Rose 神经网络的混沌同步   总被引:1,自引:0,他引:1  
研究了通过特殊构造的非线性函数耦合连接的神经网络的混沌同步问题。在发展基于稳定性准则的混沌同步方法的基础上,给出了计算同步稳定性的误差发展方程,当耦合强度取参考值时,可实现稳定的混沌同步而不需要计算最大条件Lyapunov指数去判定是否稳定。通过对按照完全连接形式构成的Hindmarsh-Rose神经网络的数值模拟,显示可仅从两个耦合神经的耦合强度的稳定性范围预期到许多耦合神经实现同步的稳定性范围。该方法在噪声影响下,对实现神经元的混沌同步仍具有较强的鲁棒性。此外发现随着耦合神经数的增加,满足同步稳定性的耦合强度减小,与耦合神经的数量成反比。  相似文献   

15.
Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information flow among networks.  相似文献   

16.
In this paper, the problem of global robust exponential stabilization for a class of neural networks with reaction-diffusion terms and time-varying delays which covers the Hopfield neural networks and cellular neural networks is investigated. A feedback control gain matrix is derived to achieve the global robust exponential stabilization of the neural networks by using the Lyapunov stability theory, and the stabilization condition can be verified if a certain Hamiltonian matrix with no eigenvalues on the imaginary axis. This condition can avoid solving an algebraic Riccati equation. Finally, a numerical simulation illustrates the effectiveness of the results.  相似文献   

17.
研究一类具变时滞的模糊BAM神经网络.利用拓扑度论和微分不等式,获得了该类网络平衡点的存在性、唯一性和全局指数稳定性的充分条件.一个例子用来解释本文获得的结果.  相似文献   

18.
A decentralized feedback control scheme is proposed to synchronize linearly coupled identical neural networks with time-varying delay and parameter uncertainties. Sufficient condition for synchronization is developed by carefully investigating the uncertain nonlinear synchronization error dynamics in this article. A procedure for designing a decentralized synchronization controller is proposed using linear matrix inequality (LMI) technique. The designed controller can drive the synchronization error to zero and overcome disruption caused by system uncertainty and external disturbance.  相似文献   

19.
This paper deals with the problem of function projective synchronization for a class of memristor-based Cohen–Grossberg neural networks with time-varying delays. Based on the theory of differential equations with discontinuous right-hand side, some novel criteria are obtained to realize the function projective synchronization of addressed networks by combining open loop control and linear feedback control. As some special cases, several control strategies are given to ensure the realization of complete synchronization, anti-synchronization and the stabilization of the considered memristor-based Cohen–Grossberg neural network. Finally, a numerical example and its simulations are provided to demonstrate the effectiveness of the obtained results.  相似文献   

20.
This paper is concerned with the stability analysis for neural networks with interval time-varying delays and parameter uncertainties. An approach combining the Lyapunov-Krasovskii functional with the differential inequality and linear matrix inequality techniques is taken to investigate this problem. By constructing a new Lyapunov-Krasovskii functional and introducing some free weighting matrices, some less conservative delay-derivative-dependent and delay-derivative-independent stability criteria are established in term of linear matrix inequality. And the new criteria are applicable to both fast and slow time-varying delays. Three numerical examples show that the proposed criterion are effective and is an improvement over some existing results in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号