首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Biventricular (Biv) pacemaker echo optimization has been shown to improve cardiac output however is not routinely used due to its complexity. We investigated the role of a simple method involving computerized pre-ejection time (PEP) assessment by radial artery tonometry in guiding Biv pacemaker optimization.

Methods

Blinded echo and radial artery tonometry were performed simultaneously in 37 patients, age 69.1 ± 12.8 years, left ventricular (LV) ejection fraction (EF) 33 ± 10%, during Biv pacemaker optimization. Effect of optimization on echo derived velocity time integral (VTI), ejection time (ET), myocardial performance index (MPI), radial artery tonometry derived PEP and echo-radial artery tonometry derived PEP/VTI and PEP/ET indices was evaluated.

Results

Significant improvement post optimization was achieved in LV ET (286.9 ± 37.3 to 299 ± 34.6 ms, p < 0.001), LV VTI (15.9 ± 4.8 cm to 18.4 ± 5.1 cm, p < 0.001) and MPI (0.57 ± 0.2 to 0.45 ± 0.13, p < 0.001) and in PEP (246.7 ± 36.1 ms to 234.7 ± 35.5 ms, p = 0.003), PEP/ET (0.88 ± 0.21 to 0.79 ± 0.17, p < 0.001), and PEP/VTI (17.3 ± 7 to 13.78 ± 4.7, p < 0.001). The correlation between comprehensive echo Doppler and radial artery tonometry-PEP guided optimal atrioventricular delay (AVD) and optimal interventricular delay (VVD) was 0.75 (p < 0.001) and 0.69 (p < 0.001) respectively. In 29 patients with follow up assessment, New York Heart Association (NYHA) class reduced from 2.5 ± 0.8 to 2.0 ± 0.9 (p = 0.004) at 1.8 ± 1.4 months.

Conclusion

An acute shortening of PEP by radial artery tonometry occurs post Biv pacemaker optimization and correlates with improvement in hemodynamics by echo Doppler and may provide a cost-efficient approach to assist with Biv pacemaker echo optimization.  相似文献   

2.

Aims

Although cardiac resynchronisation therapy (CRT) is an established treatment to improve cardiac function, a significant amount of patients do not experience noticeable improvement in their cardiac function. Optimal timing of the delay between atrial and ventricular pacing pulses (AV delay) is of major importance for effective CRT treatment and this optimum may differ between resting and exercise conditions. In this study the feasibility of haemodynamic measurements by the non-invasive finger plethysmographic method (Nexfin) was used to optimise the AV delay during exercise.

Methods and results

Thirty-one patients implanted with a CRT device in the last 4 years participated in the study. During rest and in exercise, stroke volume (SV) was measured using the Nexfin device for several AV delays. The optimal AV delay at rest and in exercise was determined using the least squares estimates (LSE) method. Optimisation created a clinically significant improvement in SV of 10 %. The relation between HR and the optimal AV delay was patient dependent.

Conclusion

A potential increase in SV of 10 % can be achieved using Nexfin for optimisation of AV delay during exercise. A considerable number of patients showed benefit with lengthening of the AV delay during exercise.  相似文献   

3.

 

A cutaneous force-frequency relation recording system based on first heart sound amplitude vibrations has been recently validated. Second heart sound can be simultaneously recorded in order to quantify both systole and diastole duration.

Aims

1- To assess the feasibility and extra-value of operator-independent, force sensor-based, diastolic time recording during stress.

Methods

We enrolled 161 patients referred for stress echocardiography (exercise 115, dipyridamole 40, pacing 6 patients). The sensor was fastened in the precordial region by a standard ECG electrode. The acceleration signal was converted into digital and recorded together with ECG signal. Both systolic and diastolic times were acquired continuously during stress and were displayed by plotting times vs. heart rate. Diastolic filling rate was calculated as echo-measured mitral filling volume/sensor-monitored diastolic time.

Results

Diastolic time decreased during stress more markedly than systolic time. At peak stress 62 of the 161 pts showed reversal of the systolic/diastolic ratio with the duration of systole longer than diastole. In the exercise group, at 100 bpm HR, systolic/diastolic time ratio was lower in the 17 controls (0.74 ± 0.12) than in patients (0.86 ± 0.10, p < 0.05 vs. controls). Diastolic filling rate increased from 101 ± 36 (rest) to 219 ± 92 ml/m2* s-1 at peak stress (p < 0.5 vs. rest).

Conclusion

Cardiological systolic and diastolic duration can be monitored during stress by using an acceleration force sensor. Simultaneous calculation of stroke volume allows monitoring diastolic filling rate. Stress-induced "systolic-diastolic mismatch" can be easily quantified and is associated to several cardiac diseases, possibly expanding the spectrum of information obtainable during stress.  相似文献   

4.

Background

R-wave synchronised atrial pacing is an effective temporary pacing therapy in infants with postoperative junctional ectopic tachycardia. In the technique currently used, adverse short or long intervals between atrial pacing and ventricular sensing (AP–VS) may be observed during routine clinical practice.

Objectives

The aim of the study was to analyse outcomes of R-wave synchronised atrial pacing and the relationship between maximum tracking rates and AP–VS intervals.

Methods

Calculated AP–VS intervals were compared with those predicted by experienced pediatric cardiologist.

Results

A maximum tracking rate (MTR) set 10 bpm higher than the heart rate (HR) may result in undesirable short AP–VS intervals (minimum 83 ms). A MTR set 20 bpm above the HR is the hemodynamically better choice (minimum 96 ms). Effects of either setting on the AP–VS interval could not be predicted by experienced observers. In our newly proposed technique the AP–VS interval approaches 95 ms for HR > 210 bpm and 130 ms for HR < 130 bpm. The progression is linear and decreases strictly (? 0.4 ms/bpm) between the two extreme levels.

Conclusions

Adjusting the AP–VS interval in the currently used technique is complex and may imply unfavorable pacemaker settings. A new pacemaker design is advisable to allow direct control of the AP–VS interval.
  相似文献   

5.

Background

Isolated, asymptomatic first degree AV block with narrow QRS has not prognostic significance and is not usually treated with pacemaker implantation. In some cases, yet, loss of AV synchrony because of a marked prolongation of the PR interval may cause important hemodynamic alterations, with subsequent symptoms of heart failure. Indeed, AV synchrony is crucial when atrial systole, the "atrial kick", contributes in a major way to left ventricular filling, as in case of reduced left ventricular compliance because of aging or concomitant structural heart disease.

Case presentation

We performed a trans-septal left atrium catheterization aimed at evaluating the entity of a mitral valve stenosis in a 72-year-old woman with a marked first-degree AV block, a known moderate aortic stenosis and NYHA class III symptoms of functional deterioration. We occurred in a deep alteration in cardiac hemodynamics consisting in an end-diastolic ventriculo-atrial gradient without any evidence of mitral stenosis. The patient had a substantial improvement in echocardiographic parameters and in her symptoms of heart failure after permanent pacemaker implantation with physiological AV delay.

Conclusion

We conclude that if a marked first degree AV block is associated to instrumental signs or symptoms of heart failure, the restoration of an optimal AV synchrony, achieved with dual-chamber pacing, may represent a reasonable therapeutic option leading to a consequent clinical improvement.  相似文献   

6.
Atrial fibrillation (AF) is characterized by multiple rapid and irregular atrial depolarization, leading to rapid ventricular responses exceeding 100 beats per minute (bpm). We hypothesized that rapid and irregular pacing reduced intravascular shear stress (ISS) with implication to modulating endothelial responses. To simulate AF, we paced the left atrial appendage of New Zealand White rabbits (n = 4) at rapid and irregular intervals. Surface electrical cardiograms were recorded for atrial and ventricular rhythm, and intravascular convective heat transfer was measured by microthermal sensors, from which ISS was inferred. Rapid and irregular pacing decreased arterial systolic and diastolic pressures (baseline, 99/75 mmHg; rapid regular pacing, 92/73; rapid irregular pacing, 90/68; p < 0.001, n = 4), temporal gradients ( ${\partial\tau/\partial t}$ from 1,275 ± 80 to 1,056 ± 180 dyne/cm2 s), and reduced ISS (from baseline at 32.0 ± 2.4 to 22.7 ± 3.5 dyne/cm2). Computational fluid dynamics code demonstrated that experimentally inferred ISS provided a close approximation to the computed wall shear stress at a given catheter to vessel diameter ratio, shear stress range, and catheter position. In an in vitro flow system in which time-averaged shear stress was maintained at ${{\tau_{\rm avg}} = 23 \pm 4\, {\rm dyn}\, {\rm cm}^{-2} {\rm s}^{-1}}$ , we further demonstrated that rapid pulse rates at 150 bpm down-regulated endothelial nitric oxide, promoted superoxide (O 2 .? ) production, and increased monocyte binding to endothelial cells. These findings suggest that rapid pacing reduces ISS and ${\partial\tau/\partial t}$ , and rapid pulse rates modulate endothelial responses.  相似文献   

7.

Background

Atrial electrical remodeling has been shown to influence the outcome the outcome following cardioversion of atrial fibrillation (AF) in experimental studies. The aim of the present study was to find out whether a non-invasively measured atrial fibrillatory cycle length, alone or in combination with other non-invasive parameters, could predict sinus rhythm maintenance after cardioversion of AF.

Methods

Dominant atrial cycle length (DACL), a previously validated non-invasive index of atrial refractoriness, was measured from lead V1 and a unipolar oesophageal lead prior to cardioversion in 37 patients with persistent AF undergoing their first cardioversion.

Results

32 patients were successfully cardioverted to sinus rhythm. The mean DACL in the 22 patients who suffered recurrence of AF within 6 weeks was 152 ± 15 ms (V1) and 147 ± 14 ms (oesophagus) compared to 155 ± 17 ms (V1) and 151 ± 18 ms (oesophagus) in those maintaining sinus rhythm (NS). Left atrial diameter was 48 ± 4 mm and 44 ± 7 mm respectively (NS). The optimal parameter predicting maintenance of sinus rhythm after 6 weeks appeared to be the ratio of the lowest dominant atrial cycle length (oesophageal lead or V1) to left atrial diameter. This ratio was significantly higher in patients remaining in sinus rhythm (3.4 ± 0.6 vs. 3.1 ± 0.4 ms/mm respectively, p = 0.04).

Conclusion

In this study neither an index of atrial refractory period nor left atrial diameter alone were predictors of AF recurrence within the 6 weeks of follow-up. The ratio of the two (combining electrophysiological and anatomical measurements) only slightly improve the identification of patients at high risk of recurrence of persistent AF. Consequently, other ways to asses electrical remodeling and / or other variables besides electrical remodeling are involved in determining the outcome following cardioversion.  相似文献   

8.

Background

Biventricular (BiV) is extensively used in the treatment of congestive heart failure but so far no recommendations for optimized programming of atrioventricular-delay (AVD) settings have been proposed. Can AVD optimization be performed using a simple formula based on non-invasive doppler-echocardiography?

Methods

25 patients (ejection fraction 30±8%) received BiV ICDs. Doppler-echocardiographic evaluation of diastolic and systolic flow was performed for different AVDs (30ms to 150ms) and different stimulation sites (left ventricular (LV), right ventricular and BiV). The optimal atrioventricular delay was calculated applying a simple formula based on systolic and diastolic mechanical delays determined during doppler-echocardiography.

Results

The mean optimal AVD was calculated to be 112±29ms (50 to 180ms) for BiV, 95±30ms (65 to 150ms) for LV and 75±28ms (40 to 125ms) for right ventricular pacing with wide interindividual variations. Compared to suboptimal AVDs diastolic optimization improved preejection and ejection intervals independent to pacing site. Optimization of the AVD significantly increased ejection time during BiV pacing (279ms versus 266ms; p<0.05). Compared to LV or right ventricular pacing BiV pacing produced the shortest mean pre-ejection and longest ejection intervals as parameters of improved systolic ventricular contractile synchrony. Diastolic filling times were longest during BiV pacing compared to LV or RV pacing.

Conclusions

Individual programming of BiV pacing devices increases hemodynamic benefit when implementing the inter-individually widely varying electromechanical delays. Optimization applying a simple formula not only improves diastolic ventricular filling but also increases systolic functional parameters.  相似文献   

9.

Background

Radiofrequency catheter ablation of atrial fibrillation (AF) has been proved to be effective and to prevent progressive left atrial (LA) remodeling. Cryoballoon catheter ablation (CCA), using a different energy source, was developed to simplify the ablation procedure. Our hypothesis was that successful CCA can also prevent progressive LA remodeling.

Methods

36 patients selected for their first CCA because of nonvalvular paroxysmal AF had echocardiography before and 3, 6 and 12 months after CCA. LA diameters, volumes (LAV) and LA volume index (LAVI) were evaluated. LA function was assessed by: early diastolic velocities of the mitral annulus (Aasept, Aalat), LA filling fraction (LAFF), LA emptying fraction (LAEF) and the systolic fraction of pulmonary venous flow (PVSF). Detailed left ventricular diastolic function assessment was also performed.

Results

Excluding recurrences in the first 3-month blanking period, the clinical success rate was 64%. During one-year of follow-up, recurrent atrial arrhythmia was found in 21 patients (58%). In the recurrent group at 12 months after ablation, minimal LAV (38 ± 19 to 44 ± 20 ml; p < 0.05), maximal LAV (73 ± 23 to 81 ± 24 ml; p < 0.05), LAVI (35 ± 10 to 39 ± 11 ml/m2; p = 0.01) and the maximal LA longitudinal diameter (55 ± 5 to 59 ± 6 mm; p < 0.01) had all increased. PVSF (58 ± 9 to 50 ± 10%; p = 0.01) and LAFF (36 ± 7 to 33 ± 8%; p = 0.03) had decreased. In contrast, after successful cryoballoon ablation LA size had not increased and LA function had not declined. In the recurrent group LAEF was significantly lower at baseline and at follow-up visits.

Conclusions

In patients whose paroxysmal atrial fibrillation recurred within one year after cryoballoon catheter ablation left atrial size had increased and left atrial function had declined. In contrast, successful cryoballoon catheter ablation prevented progressive left atrial remodeling.  相似文献   

10.

Background

Empiric programming of the atrio-ventricular (AV) delay is commonly performed during pacemaker implantation. Transmitral flow assessment by Doppler echocardiography can be used to find the optimal AV delay by Ritter''s method, but this cannot easily be performed during pacemaker implantation. We sought to determine a non-invasive surrogate for this assessment. Since electrocardiographic P-wave duration estimates atrial activation time, we hypothesized this measurement may provide a more appropriate basis for programming AV intervals.

Methods

A total of 19 patients were examined at the time of dual chamber pacemaker implantation, 13 (68%) being male with a mean age of 77. Each patient had the optimal AV interval determined by Ritter''s method. The P-wave duration was measured independently on electrocardiograms using MUSE® Cardiology Information System (version 7.1.1). The relationship between P-wave duration and the optimal AV interval was analyzed.

Results

The P-wave duration and optimal AV delay were related by a correlation coefficient of 0.815 and a correction factor of 1.26. The mean BMI was 27. The presence of hypertension, atrial fibrillation, and valvular heart disease was 13 (68%), 3 (16%), and 2 (11%) respectively. Mean echocardiographic parameters included an ejection fraction of 58%, left atrial index of 32 ml/m2, and diastolic dysfunction grade 1 (out of 4).

Conclusions

In patients with dual chamber pacemakers in AV sequentially paced mode and normal EF, electrocardiographic P-wave duration correlates to the optimal AV delay by Ritter''s method by a factor of 1.26.  相似文献   

11.

Background

Electrical fusion between left ventricular pacing and spontaneous right ventricular activation is considered the key to resynchronisation in sinus rhythm patients treated with single-site left ventricular pacing.

Aim

Use of QRS morphology to optimize device programming in patients with heart failure (HF), sinus rhythm (SR), left bundle branch block (LBBB), treated with single-site left ventricular pacing.

Methods and Results

We defined the "fusion band" (FB) as the range of AV intervals within which surface ECG showed an intermediate morphology between the native LBBB and the fully paced right bundle branch block patterns. Twenty-four patients were enrolled. Echo-derived parameters were collected in the FB and compared with the basal LBBB condition. Velocity time integral and ejection time did not improve significantly. Diastolic filling time, ejection fraction and myocardial performance index showed a statistically significant improvement in the FB. Interventricular delay and mitral regurgitation progressively and significantly decreased as AV delay shortened in the FB. The tissue Doppler asynchrony index (Ts-SD-12-ejection) showed a non significant decreasing trend in the FB. The indications provided by the tested parameters were mostly concordant in that part of the FB corresponding to the shortest AV intervals.

Conclusion

Using ECG criteria based on the FB may constitute an attractive option for a safe, simple and rapid optimization of resynchronization therapy in patients with HF, SR and LBBB.  相似文献   

12.

Purpose

To study the correlation between the sudden prolongations of the atrio-Hisian (AH) interval with ≥50 ms during burst and programmed atrial stimulation, and to define whether the AH jump during burst atrial pacing is a reliable diagnostic criterion for dual AV nodal physiology.

Methods

Retrospective data on 304 patients with preliminary ECG diagnosis of AV nodal reentrant tachycardia (AVNRT), confirmed during electrophysiological study, was analyzed for the presence of AH jump during burst and programmed atrial stimulation, and for correlation between the pacing modes for inducing the jump. Wilcoxon signed-ranks test and Spearman's bivariate correlation coefficient were applied, significant was P-value <0.05.

Results

The population was aged 48.5 ± 15.7 (12-85) years; males were 38.5%. AH jump occurred during burst atrial pacing in 81% of the patients, and during programmed stimulation – in 78%, P = 0.366. In 63.2% AH jump was induced by both pacing modes; in 17.8% – only by burst pacing; in 14.8% – only by programmed pacing; in 4.2% there was no inducible jump. There was negative correlation between both pacing modes, ρ = –0.204, Р<0.001.

Conclusion

Burst and programmed atrial stimulation separately prove the presence of dual AV nodal physiology in 81 and 78% of the patients with AVNRT, respectively. There is negative correlation between the two pacing modes, allowing the combination of the two methods to prove diagnostic in 95.8% of the patients.  相似文献   

13.

Objectives

Left atrium (LA) plays an important role in left ventricular filling. It is well known that right ventricular apical pacing has unfavorable effects on ventricular systolic and diastolic performance. The aim of this study is to evaluate the LA mechanical functions with 2D echocardiography in patients with a permanent pacemaker after short time ventricular pacing.

Design

Echocardiographic examination was performed in 38 patients (mean age 63.0± 10.9, 18 female) with dual chamber pacemakers or defibrillators (< 20% ventricular pacing within previous 6 months, all of them on sinus rhythm) before and after 4 hours > 90% ventricular pacing at 70 beats per minute in DDD mode with an optimal AV interval. Left atrial volumes (LAV) including at the time of mitral valve opening (Vmax), at closure (Vmin), and at the onset of atrial systole (Volp) were measured. The passive emptying, conduit, active emptying and total emptying volume, stroke volumes were also calculated.

Results

No significant differences were noted at baseline and after pacing for absolute Vmax, Volp, passive emptying, conduit, active emptying, total emptying volumes as well as the volumes indexed to body surface area (p >0.05).

Conclusions

Short - time RV pacing seems to have no acute effects on left atrial mechanical functions.  相似文献   

14.

Background

Real time three dimensional (RT3D) echocardiography is an accurate and reproducible method for assessing left ventricular shape and function.

Aim

assess the feasibility and reproducibility of RT3D stress echocardiography (SE) (exercise and pharmacological) in the evaluation of left ventricular function compared to 2D.

Methods and results

One hundred eleven patients with known or suspected coronary artery disease underwent 2D and RT3DSE. The agreement in WMSI, EDV, ESV measurements was made off-line. The feasibility of RT-3DSE was 67%. The inter-observer variability for WMSI by RT3D echo was higher during exercise and with suboptimal quality images (good: k = 0.88; bad: k = 0.69); and with high heart rate both for pharmacological (HR < 100 bpm, k = 0.83; HR ≥ 100 bpm, k = 0.49) and exercise SE (HR < 120 bpm, k = 0.88; HR ≥ 120 bpm, k = 0.78). The RT3D reproducibility was high for ESV volumes (0.3 ± 14 ml; CI 95%: -27 to 27 ml; p = n.s.).

Conclusions

RT3DSE is more vulnerable than 2D due to tachycardia, signal quality, patient decubitus and suboptimal resting image quality, making exercise RT3DSE less attractive than pharmacological stress.  相似文献   

15.

Background

The prognostic significance of paced QRS complex morphology on surface ECG remains unclear. This study aimed to assess long-term outcomes associated with variations in the paced QRS complex.

Methods

Adult patients who underwent dual-chamber pacemaker implantation with 20% or more ventricular pacing and a 12-lead ECG showing a paced complex were included. The paced QRS was analyzed in leads I and aVL. Long-term clinical and echocardiographic outcomes were compared at 5 years.

Results

The study included 844 patients (43.1% female; age 75.0?±?12.1). Patients with a longer paced QRS (pQRS) duration in lead I had a lower rate of atrial fibrillation (HR 0.80; p?=?0.03) and higher rate of systolic dysfunction (HR 1.17; p?<?0.001). Total pacing complex (TPC) duration was linked to higher rates of ICD implantation (HR 1.18; p?=?0.04) and systolic dysfunction (HR 1.22, p?<?0.001). Longer paced intrinsicoid deflection (pID) was associated with less atrial fibrillation (HR 0.75; p?=?0.01), more systolic dysfunction (HR 1.17; p?<?0.001), ICD implantation (HR 1.23; p?=?0.04), and CRT upgrade (HR 1.23; p?=?0.03). Exceeding thresholds for TPC, pQRS, and pID of 170, 146, and 112?ms in lead I, respectively, was associated with a substantial increase in systolic dysfunction over 5 years (p?<?0.001).

Conclusions

Longer durations of all tested parameters in lead I were associated with increased rates of left ventricular systolic dysfunction. ICD implantation and CRT upgrade were also linked to increased TPC and pID durations. Paradoxically, patients with longer pID and pQRS had less incident atrial fibrillation.  相似文献   

16.

Background

Patients with diabetes mellitus (DM) have high risk of heart failure. Whether some of the risk is directly linked to metabolic derangements in the myocardium or whether the risk is primarily caused by coronary artery disease (CAD) and hypertension is incompletely understood. Echocardiographic tissue Doppler imaging was therefore performed in DM patients without significant CAD to examine whether DM per se influenced cardiac function.

Methods

Patients with a left ventricular (LV) ejection fraction (EF) > 35% and without significant CAD, prior myocardial infarction, cardiac pacemaker, atrial fibrillation, or significant valve disease were identified from a tertiary invasive center register. DM patients were matched with controls on age, gender and presence of hypertension.

Results

In total 31 patients with diabetes and 31 controls were included. Mean age was 58 ± 12 years, mean LVEF was 51 ± 7%, and 48% were women. No significant differences were found in LVEF, left atrial end systolic volume, or left ventricular dimensions. The global longitudinal strain was significantly reduced in patients with DM (15.9 ± 2.9 vs. 17.7 ± 2.9, p = 0.03), as were peak longitudinal systolic (S') and early diastolic (E') velocities (5.7 ± 1.1 vs. 6.4 ± 1.1 cm/s, p = 0.02 and 6.1 ± 1.7 vs. 7.7 ± 2.0 cm/s, p = 0.002). In multivariable regression analyses, DM remained significantly associated with impairments of S' and E', respectively.

Conclusion

In patients without significant CAD, DM is associated with an impaired systolic longitudinal LV function and global diastolic dysfunction. These abnormalities are likely to be markers of adverse prognosis.  相似文献   

17.

Aims

We evaluate the incidence of epicardial lead failure and try to identify risk factors in patients with congenital heart disease.

Methods

All patients with a congenital heart defect and an epicardial pacing system, implanted within a timeframe of 25 years, were included in this study. Patients’ medical records and lead data were reviewed. Lead failure was defined as the primary endpoint.

Results

In total 198 active epicardial leads (atrial 40, ventricular 158) were implanted in 93 patients (median age at implantation 4.4 years (range 0–58.6)). During a total follow-up of 1235 lead-years, 29 lead failures (14.6%, 4 atrial, 25 ventricular) were documented in 22 patients (23.7%). Lead failure occurred at a median time period of 4.8 years (range 1.2–24.1) after implantation. Five-year freedom of lead failure was 88%. The only independent predictor for lead failure was the age at implantation (HR 0.44; 95%CI 0.20–0.97, p?=?0.04), other characteristics failed to predict lead failure. Sudden cardiac death occurred in four patients (4.3%), in one a lead failure was documented.

Conclusion

A high incidence of epicardial lead failures is found in patients with congenital heart disease. Unfortunately, it is difficult to predict this potentially life-threatening complication.  相似文献   

18.

Background

New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates.

Aim

To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system.

Methods

We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording.

Results

Interpretable sensor recordings were obtained in all patients (feasibility = 100%). Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value) was more frequent in patients than controls (27% vs 8%, p < 0.05). At 100 bpm stress heart rate, systolic/diastolic time ratio (normal, < 1) was > 1 in 20 patients and in none of the controls (p < 0.01); at recovery systolic/diastolic ratio was > 1 in only 3 patients (p < 0.01 vs stress). Post-exercise reduced arterial pressure was sensed.

Conclusion

Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor.  相似文献   

19.

Background

In comparison to the well established changes in compliance that occur at the large vessel level in diabetes, much less is known about the changes in compliance of the cardiovascular system at the end-organ level. The aim of this study was therefore to examine whether there was a correlation between resistance of the intrarenal arteries of the kidney and compliance of the left ventricle, as estimated by measurements of diastolic function, in subjects with type 2 diabetes.

Methods

We studied 167 unselected clinic patients with type 2 diabetes with a kidney duplex scan to estimate intrarenal vascular resistance, i.e. the resistance index (RI = peak systolic velocity-minimum diastolic velocity/peak systolic velocity) and a transthoracic echocardiogram (TTE) employing tissue doppler studies to document diastolic and systolic ventricular function.

Results

Renal RI was significantly higher in subjects with diastolic dysfunction (0.72 ± 0.05) when compared with those who had a normal TTE examination (0.66 ± 0.06, p < 0.01). Renal RI values were correlated with markers of diastolic dysfunction including the E/Vp ratio (r = 0.41, p < 0.001), left atrial area (r = 0.36, p < 0.001), the E/A ratio (r = 0.36, p < 0.001) and the E/E' ratio (r = 0.31, p < 0.001). These associations were independent of systolic function, hypertension, the presence and severity of chronic kidney disease, the use of renin-angiotensin inhibitors and other potentially confounding variables.

Conclusion

Increasing vascular resistance of the intrarenal arteries was associated with markers of diastolic dysfunction in subjects with type 2 diabetes. These findings are consistent with the hypothesis that vascular and cardiac stiffening in diabetes are manifestations of common pathophysiological mechanisms.  相似文献   

20.

Background

Type 2 diabetes mellitus (DM-2) is one of the most prevalent chronic diseases of the aged and contributes to a significant amount of cardiovascular disease morbidity and mortality. Exercise training may be beneficial in attenuating the cardiovascular maladaptations associated with DM-2. The purpose of this study was to examine the effects of exercise training on left ventricular (LV) and vascular function in a sample of postmenopausal women with DM-2.

Methods

Twenty-eight postmenopausal women with DM-2 (age: 59 ± 7 yrs) were assigned to either an exercise training (ET) (n = 17) or control group (CT) (n = 7). Cardiorespiratory fitness ( ), LV filling dynamics and arterial compliance were assessed at baseline in all participants. The ET group performed a supervised aerobic and resistance training intervention three days per week for a period of 10 weeks, while the CT group continued normal activities of daily living.

Results

Body mass index, , age and duration of diabetes were similar between the ET and CT groups at baseline. (21.3 ± 3.3 to 24.5 ± 4.2 ml·kg-1·min-1, p < 0.05) and large artery compliance (1.0 ± 0.4 to 1.2 ± 0.4 mL·mmHg-1, p < 0.05), increased significantly in the ET group following training despite no change in LV filling dynamics, blood pressure, lipid profile or insulin sensitivity. All variables remained unchanged in the CT group.

Conclusions

Exercise training improves large artery compliance and cardiorespiratory fitness in postmenopausal women with DM-2, without any appreciable changes in LV filling dynamics or conventional risk factors for cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号