首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to develop a multiplex-touchdown PCR method to simultaneously detect 3 species of protozoan parasites, i.e., Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the major causes of traveler’s diarrhea and are resistant to standard antimicrobial treatments. The target genes included the Cryptosporidium oocyst wall protein for C. parvum, Glutamate dehydrogenase for G. lamblia, and 18S ribosomal RNA (18S rRNA) for C. cayetanensis. The sizes of the amplified fragments were 555, 188, and 400 bps, respectively. The multiplex-touchdown PCR protocol using a primer mixture simultaneously detected protozoa in human stools, and the amplified gene was detected in >1×103 oocysts for C. parvum, >1×104 cysts for G. lamblia, and >1 copy of the 18S rRNA gene for C. cayetanensis. Taken together, our protocol convincingly demonstrated the ability to simultaneously detect C. parvum, G. lamblia, and C. cayetanenesis in stool samples.  相似文献   

2.
Evaluation of Cryptosporidium parvum Genotyping Techniques   总被引:1,自引:0,他引:1       下载免费PDF全文
We evaluated the specificity and sensitivity of 11 previously described species differentiation and genotyping PCR protocols for detection of Cryptosporidium parasites. Genomic DNA from three species of Cryptosporidium parasites (genotype 1 and genotype 2 of C. parvum, C. muris, and C. serpentis), two Eimeria species (E. neischulzi and E. papillata), and Giardia duodenalis were used to evaluate the specificity of primers. Furthermore, the sensitivity of the genotyping primers was tested by using genomic DNA isolated from known numbers of oocysts obtained from a genotype 2 C. parvum isolate. PCR amplification was repeated at least three times with all of the primer pairs. Of the 11 protocols studied, 10 amplified C. parvum genotypes 1 and 2, and the expected fragment sizes were obtained. Our results indicate that two species-differentiating protocols are not Cryptosporidium specific, as the primers used in these protocols also amplified the DNA of Eimeria species. The sensitivity studies revealed that two nested PCR-restriction fragment length polymorphism (RFLP) protocols based on the small-subunit rRNA and dihydrofolate reductase genes are more sensitive than single-round PCR or PCR-RFLP protocols.  相似文献   

3.
PCR detection of intestinal protozoa is often restrained by a poor DNA recovery or by inhibitors present in feces. The need for an extraction protocol that can overcome these obstacles is therefore clear. QIAamp® DNA Stool Mini Kit (Qiagen) was evaluated for its ability to recover DNA from oocysts/cysts directly from feces. Twenty-five Giardia-positive, 15 Cryptosporidium-positive, 15 Entamoeba histolytica-positive, and 45 protozoa-free samples were processed as control by microscopy and immunoassay tests. DNA extracts were amplified using 3 sets of published primers. Following the manufacturer''s protocol, the kit showed sensitivity and specificity of 100% towards Giardia and Entamoeba. However, for Cryptosporidium, the sensitivity and specificity were 60% (9/15) and 100%, respectively. A series of optimization experiments involving various steps of the kit''s protocol were conducted using Cryptosporidium-positive samples. The best DNA recoveries were gained by raising the lysis temperature to the boiling point for 10 min and the incubation time of the InhibitEX tablet to 5 min. Also, using a pre-cooled ethanol for nucleic acid precipitation and small elution volume (50-100 µl) were valuable. The sensitivity of the amended protocol to Cryptosporidium was raised to 100%. Cryptosporidium DNA was successfully amplified by either the first or the second primer set. When applied on parasite-free feces spiked with variable oocysts/cysts counts, ≈ 2 oocysts/cysts were theoretically enough for detection by PCR. To conclude, the Qiagen kit with the amended protocol was proved to be suitable for protozoan DNA extraction directly from feces and support PCR diagnosis.  相似文献   

4.
Various constituents in clinical specimens, particularly feces, can inhibit the PCR assay and lead to false-negative results. To ensure that negative results of a diagnostic PCR assay are true, it should be properly monitored by an inhibition control. In this study, a cloning vector harboring a modified target DNA sequence (≈375 bp) was constructed to be used as a competitive internal amplification control (IAC) for a conventional PCR assay that detects ≈550 bp of the Cryptosporidium oocyst wall protein (COWP) gene sequence in human feces. Modification of the native PCR target was carried out using a new approach comprising inverse PCR and restriction digestion techniques. IAC was included in the assay, with the estimated optimum concentration of 1 fg per reaction, as duplex PCR. When applied on fecal samples spiked with variable oocysts counts, ≈2 oocysts were theoretically enough for detection. When applied on 25 Cryptosporidium-positive fecal samples of various infection intensities, both targets were clearly detected with minimal competition noticed in 2-3 samples. Importantly, both the analytical and the diagnostic sensitivities of the PCR assay were not altered with integration of IAC into the reactions. When tried on 180 randomly collected fecal samples, 159 were Cryptosporidium-negatives. Although the native target DNA was absent, the IAC amplicon was obviously detected on gel of all the Cryptosporidium-negative samples. These results imply that running of the diagnostic PCR, inspired with the previously developed DNA extraction protocol and the constructed IAC, represents a useful tool for Cryptosporidium detection in human feces.  相似文献   

5.
Concurrent with recent advances seen with Cryptosporidium parvum detection in both treated and untreated water is the need to properly evaluate these advances. A micromanipulation method by which known numbers of C. parvum oocysts, even a single oocyst, can be delivered to a test matrix for detection sensitivity is presented. Using newly developed nested PCR-restriction fragment length polymorphism primers, PCR sensitivity was evaluated with 1, 2, 3, 4, 5, 7, or 10 oocysts. PCR detection rates (50 samples for each number of oocysts) ranged from 38% for single oocysts to 92% for 5 oocysts, while 10 oocysts were needed to achieve 100% detection. The nested PCR conditions amplified products from C. parvum, Cryptosporidium baileyi, and Cryptosporidium serpentis but no other Cryptosporidium sp. or protozoan tested. Restriction enzyme digestion with VspI distinguished between C. parvum genotypes 1 and 2. Restriction enzyme digestion with DraII distinguished C. parvum from C. baileyi and C. serpentis. Use of known numbers of whole oocysts encompasses the difficulty of liberating DNA from the oocyst and eliminates the standard deviation inherent within a dilution series. To our knowledge this is the first report in which singly isolated C. parvum oocysts were used to evaluate PCR sensitivity. This achievement illustrates that PCR amplification of a single oocyst is feasible, yet sensitivity remains an issue, thereby illustrating the difficulty of dealing with low oocyst numbers when working with environmental water samples.  相似文献   

6.
We developed and validated a PCR-based method for identifying Cryptosporidium species and/or genotypes present on oocyst-positive microscope slides. The method involves removing coverslips and oocysts from previously examined slides followed by DNA extraction. We tested four loci, the 18S rRNA gene (N18SDIAG and N18SXIAO), the Cryptosporidium oocyst wall protein (COWP) gene (STN-COWP), and the dihydrofolate reductase (dhfr) gene (by multiplex allele-specific PCR), for amplifying DNA from low densities of Cryptosporidium parvum oocysts experimentally seeded onto microscope slides. The N18SDIAG locus performed consistently better than the other three tested. Purified oocysts from humans infected with C. felis, C. hominis, and C. parvum and commercially purchased C. muris were used to determine the sensitivities of three loci (N18SDIAG, STN-COWP, and N18SXIAO) to detect low oocyst densities. The N18SDIAG primers provided the greatest number of positive results, followed by the N18SXIAO primers and then the STN-COWP primers. Some oocyst-positive slides failed to generate a PCR product at any of the loci tested, but the limit of sensitivity is not entirely based on oocyst number. Sixteen of 33 environmental water monitoring Cryptosporidium slides tested (oocyst numbers ranging from 1 to 130) contained mixed Cryptosporidium species. The species/genotypes most commonly found were C. muris or C. andersoni, C. hominis or C. parvum, and C. meleagridis or Cryptosporidium sp. cervine, ferret, and mouse genotypes. Oocysts on one slide contained Cryptosporidium muskrat genotype II DNA.  相似文献   

7.
Nucleotide sequences of the Cryptosporidium oocyst wall protein (COWP) gene were obtained from various Cryptosporidium spp. (C. wrairi, C. felis, C. meleagridis, C. baileyi, C. andersoni, C. muris, and C. serpentis) and C. parvum genotypes (human, bovine, monkey, marsupial, ferret, mouse, pig, and dog). Significant diversity was observed among species and genotypes in the primer and target regions of a popular diagnostic PCR. These results provide useful information for COWP-based molecular differentiation of Cryptosporidium spp. and genotypes.  相似文献   

8.
In order to acquire prevalence and genetic data on Cryptosporidium infections in captive lizards and snakes kept as pets, a survey was conducted on 150 individual reptiles from southern Italy. Fecal samples were preserved in 5% formalin and analyzed using a commercial immunofluorescence assay (IFA) for the detection of Cryptosporidium oocysts and Giardia cysts. IFA revealed the presence of Cryptosporidium oocysts in nine of the 150 samples examined (6.0%), precisely in 6/125 snakes (4.8%) and in 3/25 lizards (12.0%); all fecal samples tested negative for the presence of Giardia cysts. Molecular characterization based on nested PCR amplification and sequencing of the SSU-rRNA gene, revealed the presence of Cryptosporidium serpentis in three samples from snakes (Boa constrictor constrictor, Elapheguttata guttata guttata and Python molurus).  相似文献   

9.
The protozoan pathogens Giardia lamblia and Cryptosporidium parvum are major causes of waterborne enteric disease throughout the world. Improved detection methods that are very sensitive and rapid are urgently needed. This is especially the case for analysis of environmental water samples in which the densities of Giardia and Cryptosporidium are very low. Primers and TaqMan probes based on the β-giardin gene of G. lamblia and the COWP gene of C. parvum were developed and used to detect DNA concentrations over a range of 7 orders of magnitude. It was possible to detect DNA to the equivalent of a single cyst of G. lamblia and one oocyst of C. parvum. A multiplex real-time PCR (qPCR) assay for simultaneous detection of G. lamblia and C. parvum resulted in comparable levels of detection. Comparison of DNA extraction methodologies to maximize DNA yield from cysts and oocysts determined that a combination of freeze-thaw, sonication, and purification using the DNeasy kit (Qiagen) provided a highly efficient method. Sampling of four environmental water bodies revealed variation in qPCR inhibitors in 2-liter concentrates. A methodology for dealing with qPCR inhibitors that involved the use of Chelex 100 and PVP 360 was developed. It was possible to detect and quantify G. lamblia in sewage using qPCR when applying the procedure for extraction of DNA from 1-liter sewage samples. Numbers obtained from the qPCR assay were comparable to those obtained with immunofluorescence microscopy. The qPCR analysis revealed both assemblage A and assemblage B genotypes of G. lamblia in the sewage. No Cryptosporidium was detected in these samples by either method.  相似文献   

10.
There are currently no standard methods for the detection of Cryptosporidium spp., or other protozoan parasites, in foods, and existing methods are often inadequate, with low and variable recovery efficiencies. Food testing is difficult due to the low concentrations of parasites, the difficulty in eluting parasites from some foods, the lack of enrichment methods, and the presence of PCR inhibitors. The main objectives of the present study were to obtain DNA aptamers binding to the oocyst wall of C. parvum, and to use the aptamers to detect the presence of this parasite in foods. DNA aptamers were selected against C. parvum oocysts using SELEX (Systematic Evolution of Ligands by EXponential enrichment). Ten rounds of selection led to the discovery of 14 aptamer clones with high affinities for C. parvum oocysts. For detecting parasite-bound aptamers, a simple electrochemical sensor was employed, which used a gold nanoparticle-modified screen-printed carbon electrode. This aptasensor was fabricated by self-assembling a hybrid of a thiolated ssDNA primer and the anti- C. parvum aptamer. Square wave voltammetry was employed to quantitate C. parvum in the range of 150 to 800 oocysts, with a detection limit of approximately 100 oocysts. The high sensitivity and specificity of the developed aptasensor suggests that this novel method is very promising for the detection and identification of C. parvum oocysts on spiked fresh fruits, as compared to conventional methods such as microscopy and PCR.  相似文献   

11.
Fifty-seven fecal samples were collected from giant pandas (Ailuropoda melanoleuca) in the China Conservation and Research Centre for the Giant Panda (CCRCGP) in Sichuan and examined for Cryptosporidium oocysts by Sheather's sugar flotation technique. An 18-year-old male giant panda was Cryptosporidium positive, with oocysts of an average size of 4.60 × 3.99 μm (n = 50). The isolate was genetically analyzed using the partial 18S rRNA, 70 kDa heat shock protein (HSP70), Cryptosporidium oocyst wall protein (COWP) and actin genes. Multi-locus genetic characterization indicated that the present isolate was different from known Cryptosporidium species and genotypes. The closest relative was the Cryptosporidium bear genotype, with 11, 10, and 6 nucleotide differences in the 18S rRNA, HSP70, and actin genes, respectively. Significant differences were also observed in the COWP gene compared to Cryptosporidium mongoose genotype. The homology to the bear genotype at the 18S rRNA locus was 98.6%, which is comparable to that between Cryptosporidium parvum and Cryptosporidium hominis (99.2%), or between Cryptosporidium muris and Cryptosporidium andersoni (99.4%). Therefore, the Cryptosporidium in giant pandas in this study is considered as a new genotype: the Cryptosporidium giant panda genotype.  相似文献   

12.
In order to determine the specificities of PCR-based assays used for detecting Cryptosporidium parvum DNA, eight pairs of previously described PCR primers targeting six distinct regions of the Cryptosporidium genome were evaluated for the detection of C. parvum, the agent of human cryptosporidiosis, and C. muris, C. baileyi, and C. meleagridis, three Cryptosporidium species that infect birds or mammals but are not considered to be human pathogens. The four Cryptosporidium species were divided into two groups: C. parvum and C. meleagridis, which gave the same-sized fragments with all the reactions, and C. muris and C. baileyi, which gave positive results with primer pairs targeting the 18S rRNA gene only. In addition to being genetically similar at each of the eight loci analyzed by DNA amplification, C. parvum and C. meleagridis couldn’t be differentiated even after restriction enzyme digestion of the PCR products obtained from three of the target genes. This study indicates that caution should be exercised in the interpretation of data from water sample analysis performed by these methods, since a positive result does not necessarily reflect a contamination by the human pathogen C. parvum.  相似文献   

13.
Cryptosporidium parvum and C. hominis have been the cause of large and serious outbreaks of waterborne cryptosporidiosis. A specific and sensitive recovery-detection method is required for control of this pathogen in drinking water. In the present study, nested PCR-restriction fragment length polymorphism (RFLP), which targets the divergent Cpgp40/15 gene, was developed. This nested PCR detected only the gene derived from C. parvum and C. hominis strains, and RFLP was able to discriminate between the PCR products from C. parvum and C. hominis. To evaluate the sensitivity of nested PCR, C. parvum oocysts inoculated in water samples of two different turbidities were recovered by immunomagnetic separation (IMS) and detected by nested PCR and fluorescent antibody assay (FA). Genetic detection by nested PCR and oocyst number confirmed by FA were compared, and the results suggested that detection by nested PCR depends on the confirmed oocyst number and that nested PCR in combination with IMS has the ability to detect a single oocyst in a water sample. We applied an agitation procedure with river water solids to which oocysts were added to evaluate the recovery and detection by the procedure in environmental samples and found some decrease in the rate of detection by IMS.  相似文献   

14.
The identification and characterisation of Cryptosporidiumgenotypes and subtypes are fundamental to the study of cryptosporidiosis epidemiology, aiding in prevention and control strategies. The objective was to determine the genetic diversity ofCryptosporidium in samples obtained from hospitals of Rio de Janeiro, Brazil, and Buenos Aires, Argentina. Samples were analysed by microscopy and TaqMan polymerase chain reaction (PCR) assays forCryptosporidium detection, genotyped by nested-PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene and subtyped by DNA sequencing of the gp60 gene. Among the 89 samples from Rio de Janeiro, Cryptosporidium spp were detected in 26 by microscopy/TaqMan PCR. In samples from Buenos Aires,Cryptosporidium was diagnosed in 15 patients of the 132 studied. The TaqMan PCR and the nested-PCR-RFLP detected Cryptosporidium parvum, Cryptosporidium hominis, and co-infections of both species. In Brazilian samples, the subtypes IbA10G2 and IIcA5G3 were observed. The subtypes found in Argentinean samples were IbA10G2, IaA10G1R4, IaA11G1R4, and IeA11G3T3, and mixed subtypes of Ia and IIa families were detected in the co-infections. C. hominis was the species more frequently detected, and subtype family Ib was reported in both countries. Subtype diversity was higher in Buenos Aires than in Rio de Janeiro and two new subtypes were described for the first time.  相似文献   

15.
Amebiasis is a protozoan disease caused by Entamoeba histolytica and a potential health threat in areas where sanitation and hygiene are inappropriate. Highly sensitive PCR methods for detection of E. histolytica in clinical and environmental samples are extremely useful to control amebiasis and to promote public health. The present study compared several primer sets for small subunit (SSU) rDNA and histone genes of E. histolytica cysts. A 246 bp of the SSU rDNA gene of pure cysts contained in phosphate-buffered saline (PBS) and in stool samples was successfully amplified by nested PCR, using the 1,147-246 bp primer set, of the primary PCR products which were pre-amplified using the 1,147 bp primer as the template. The detection limit of the nested PCR using the 1,147-246 primer set was 10 cysts in both groups (PBS and stool samples). The PCR to detect histone gene showed negative results. We propose that the nested PCR technique to detect SSU rDNA can be used as a highly sensitive genetic method to detect E. histolytica cysts in stool samples.  相似文献   

16.
In order to examine the prevalence of Cryptosporidium infection in wild rodents and insectivores of South Korea and to assess their potential role as a source of human cryptosporidiosis, a total of 199 wild rodents and insectivore specimens were collected from 10 regions of South Korea and screened for Cryptosporidium infection over a period of 2 years (2012-2013). A nested-PCR amplification of Cryptosporidium oocyst wall protein (COWP) gene fragment revealed an overall prevalence of 34.2% (68/199). The sequence analysis of 18S rRNA gene locus of Cryptosporidium was performed from the fecal and cecum samples that tested positive by COWP amplification PCR. As a result, we identified 4 species/genotypes; chipmunk genotype I, cervine genotype I, C. muris, and a new genotype which is closely related to the bear genotype. The new genotype isolated from 12 Apodemus agrarius and 2 Apodemus chejuensis was not previously identified as known species or genotype, and therefore, it is supposed to be a novel genotype. In addition, the host spectrum of Cryptosporidium was extended to A. agrarius and Crosidura lasiura, which had not been reported before. In this study, we found that the Korean wild rodents and insectivores were infected with various Cryptosporidium spp. with large intra-genotypic variationa, indicating that they may function as potential reservoirs transmitting zoonotic Cryptosporidium to livestock and humans.  相似文献   

17.
We describe a nested PCR-restriction fragment length polymorphism (RFLP) method for detecting low densities of Cryptosporidium spp. oocysts in natural mineral waters and drinking waters. Oocysts were recovered from seeded 1-liter volumes of mineral water by filtration through polycarbonate membranes and from drinking waters by filtration, immunomagnetizable separation, and filter entrapment, followed by direct extraction of DNA. The DNA was released from polycarbonate filter-entrapped oocysts by disruption in lysis buffer by using 15 cycles of freeze-thawing (1 min in liquid nitrogen and 1 min at 65°C), followed by proteinase K digestion. Amplicons were readily detected from two to five intact oocysts on ethidium bromide-stained gels. DNA extracted from Cryptosporidium parvum oocysts, C. muris (RN 66), C. baileyi (Belgium strain, LB 19), human-derived C. meleagridis, C. felis (DNA from oocysts isolated from a cat), and C. andersoni was used to demonstrate species identity by PCR-RFLP after simultaneous digestion with the restriction enzymes DraI and VspI. Discrimination between C. andersoni and C. muris isolates was confirmed by a separate, subsequent digestion with DdeI. Of 14 drinking water samples tested, 12 were found to be positive by microscopy, 8 were found to be positive by direct PCR, and 14 were found to be positive by using a nested PCR. The Cryptosporidium species detected in these finished water samples was C. parvum genotype 1. This method consistently and routinely detected >5 oocysts per sample.  相似文献   

18.
Detection and enumeration of Cryptosporidium parvum in both treated and untreated waters are important to facilitate prevention of future cryptosporidiosis incidents. Immunomagnetic separation (IMS)-fluorescent antibody (FA) detection and IMS-PCR detection efficiencies were evaluated in two natural waters seeded with nominal seed doses of 5, 10, and 15 oocysts. IMS-FA detected oocysts at concentrations at or below the three nominal oocyst seed doses, illustrating that IMS-FA is sensitive enough to detect low oocyst numbers. However, the species of the oocysts could not be determined with this technique. IMS-PCR, targeting the 18S rRNA gene in this study, yielded positive amplification for 17 of the 18 seeded water samples, and the amplicons were subjected to restriction fragment length polymorphism digestion and DNA sequencing for species identification. Interestingly, the two unseeded, natural water samples were also PCR positive; one amplicon was the same base pair size as the C. parvum amplicon, and the other amplicon was larger. These two amplified products were determined to be derived from DNA of Cryptosporidium muris and a dinoflagellate. These IMS-PCR results illustrate that (i) IMS-PCR is able to detect low oocyst numbers in natural waters, (ii) PCR amplification alone is not confirmatory for detection of target DNA when environmental samples are used, (ii) PCR primers, especially those designed against the rRNA gene region, need to be evaluated for specificity with organisms closely related to the target organism, and (iv) environmental amplicons should be subjected to appropriate species-specific confirmatory techniques.  相似文献   

19.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ·cm−2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ·cm−2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ·cm−2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ·cm−2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

20.
Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, 101, 102, and 103 per 10 µl were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < 102 per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号