首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies on mice bearing various mutations within the c-kit gene, dominant white spotting (W), indicate the functional role of this tyrosine kinase receptor in the development of melanocytes, germ cells and hematopoietic cells. Despite the availability of mice defective in the c-kit gene and a respectable understanding of the molecular nature of c-kit, however, it is not clear at what stage of gestation c-kit is functionally required for the development of each of these cell lineages. To address this question, we have used a monoclonal anti-c-kit antibody, ACK2, as an antagonistic blocker of c-kit function to interfere with the development of melanocytes during embryonic and postnatal life. ACK2 injected intradermally into pregnant mice entered the embryos where it blocked the proper development of melanocytes. This inhibitory effect was manifested as coat color alteration in the offspring. Furthermore, ACK2 injection also altered the coat color of neonatal and adult mice. Based on the coat color patterns produced by ACK2 administration at various stages before or after birth, the following conclusions are drawn: (i) during mid-gestation, c-kit is functionally required during a restricted period around day 14.5 post-coitum when a sequence of events leading to melanocyte entry into the epidermal layer occurs; (ii) during postnatal life, c-kit is required for melanocyte activation which occurs concomitantly with the hair cycle which continues throughout life after neonatal development of the first hair.  相似文献   

2.
The dominant spotting (W) locus of the mouse has been demonstrated to be identical with the c-kit proto-oncogene. The c-kit is strongly expressed in hematopoietic organs and the brain of mice. In homozygotes and double heterozygotes of the W mutant alleles (hereafter W mutant), development of erythrocytes, mast cells, melanocytes and germ cells is deficient. The deficiency of erythrocytes, mast cells and melanocytes is attributed to a defect of precursor cells, but the cause of the germ cell deficiency is not clear. We investigated the effect of the W mutation on proliferative potential of cells composing various organs by examining aggregation chimeras between W mutant and wild-type (+/+) embryos. Proportions of +/+ components were significantly greater in the male germ cells and hematopoietic cells. In contrast, the average proportions of +/+ components were comparable to those of W mutant components in other organs including the brain. The present result suggests that the W (c-kit ) gene plays an important role in development of the male germ cells and hematopoietic cells and that it does not promote the proliferation of major cell population in the brain, in spite of the strong expression of the W (c-kit ) gene in the brain.  相似文献   

3.
W S Alexander  S D Lyman    E F Wagner 《The EMBO journal》1991,10(12):3683-3691
Loss-of-function mutations in the gene for the c-kit tyrosine kinase receptor are strongly implicated in the developmental abnormalities of W mutant mice. To dissect further the relationship between kit and the W phenotype, retroviruses carrying the normal murine c-kit gene were constructed. In infected cells, the level of c-kit expression from these vectors varied markedly with different promoter elements, the 5' viral LTR proving to be the most effective. When introduced into cells which normally do not express c-kit, ectopic kit receptors transduced a ligand (Steel factor)-dependent proliferative signal in IL-3-dependent DA-1 myeloid cells and induced transformation in fibroblasts. Primary mutant mast cells were used to examine the effects of reconstituting functional kit expression in cells affected by W mutations. Exogenous c-kit expression rescued the defective proliferative response to Steel factor of cells from both W/Wv and W/W mutant mice. Moreover, functional kit expression also restored the capacity of W/Wv mast cells to survive and differentiate in vivo. These results imply that defective c-kit receptor function is sufficient to generate the W mutant phenotype.  相似文献   

4.
Recent studies have shown that the dominant white spotting (W) locus encodes the proto-oncogene c-kit, a member of the tyrosine kinase receptor family. One symptom of mice bearing mutation within this gene is sterility due to developmental failure of the primordial germ cells during early embryogenesis. To elucidate the role of the c-kit in gametogenesis, we used an anti-c-kit monoclonal antibody, ACK2, as an antagonistic blocker for c-kit function to interfere with the development of male and female germ cells during postnatal life. ACK2 enabled us to detect the expression of c-kit in the gonadal tissue and also to determine the functional status of c-kit, which is expressed on the surface of a particular cell lineage. Consistent with our immunohistochemical findings, the intravenous injection of ACK2 into adult mice caused a depletion in the differentiating type A spermatogonia from the testis during 24-36 h, while the undifferentiated type A spermatogonia were basically unaffected. Intraperitoneal injections of ACK2 into prepuberal mice could completely block the mitosis of mature (differentiating) type A spermatogonia, but not the mitosis of the gonocytes and primitive type A spermatogonia, or the meiosis of spermatocytes. Our results indicate that the survival and/or proliferation of the differentiating type A spermatogonia requires c-kit, but the primitive (undifferentiated) type A spermatogonia or spermatogenic stem cells are independent from c-kit. Moreover, the antibody administration had no significant effect on oocyte maturation despite its intense expression of c-kit.  相似文献   

5.
We have studied the expression and function of c-kit on subsets of mouse thymocytes. c-kit was primarily expressed on subpopulations of CD4-CD8-CD3- triple negative (TN) cells. The strongest c-kit expression was associated with subsets that represent the least mature TN cells, including CD44+CD25- TN, and a subpopulation of CD25+ TN. These cells were also Thy-1lo, H-2Khi TSA-1hi, HSAlo, B220-, Mac-1-, and Gr-1-. Additionally, the recently described pre-TN thymocyte population (CD4loCD3-CD8-) was also c-kit+. CD25+ TN thymocytes proliferated in the presence of IL-7 and stem cell factor (the ligand for c-kit), and this proliferation was completely inhibited in the presence of anti-c-kit. Furthermore, the addition of anti-c-kit to 2-deoxyguanosine-treated fetal thymic lobes undergoing reconstitution with fetal liver-derived precursor cells inhibited their T cell differentiation potential. These observations indicate an important role for c-kit/stem cell factor interactions during early thymocyte development.  相似文献   

6.
K Nocka  J Buck  E Levi    P Besmer 《The EMBO journal》1990,9(10):3287-3294
The c-kit proto-oncogene encodes a transmembrane tyrosine kinase receptor for an unidentified ligand and is allelic with the murine white-spotting locus (W). W mutations affect melanogenesis, gametogenesis and hematopoiesis during development and in adult life. Cellular targets of W mutations in hematopoiesis include distinct cell populations in the erythroid and mast cell lineages as well as stem cells. In the absence of interleukin-3 (IL-3) mast cells derived from normal mice but not from W mutant mice can be maintained by co-culture with 3T3 fibroblasts. Based on the defective proliferative response of W mast cells in the 3T3 fibroblast co-culture system it had been proposed that fibroblasts produce the c-kit ligand. We have used a mast cell proliferation assay to purify a 30 kd protein, designated KL, from conditioned medium of Balb/3T3 fibroblasts to apparent homogeneity. KL stimulates the proliferation of normal bone marrow derived mast cells but not mast cells from W mice, although both normal and mutant mast cells respond similarly to IL-3. Connective tissue-type mast cells derived from the peritoneal cavity of normal mice were found to express a high level of c-kit protein on their surface and to proliferate in response to KL. The effect of KL on erythroid progenitor cells was investigated as well. In combination with erythropoietin, KL was found to stimulate early erythroid progenitors (BFU-E) from fetal liver and spleen cells but not from bone marrow cells of adult mice and from fetal liver cells of W/W mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Mutations in either the dominant white-spotting (W) or Steel (Sl) loci of the mouse lead to coat color, primordial germ cell and hematopoietic defects. Consistent with the cell autonomous and microenvironmental nature of W and Sl mutations, respectively, it has recently been shown that W encodes the c-kit receptor tyrosine kinase while Sl encodes a ligand for this receptor. Previous in situ hybridization analysis has shown that both c-kit and steel are expressed in the embryo in anatomical sites known to be affected by W and Sl mutations and in various tissues in which no corresponding phenotype has been described. To investigate the possible involvement of the Kit transduction pathway in developmental processes, we compared the patterns of expression of c-kit and steel in wild-type embryos and in embryos homozygous for severe (lethal) and mild (viable) alleles at the W and Sl loci. In addition, we analyzed the patterns of expression of both genes in adult wild-type and mutant gonads and brain. Both c-kit and steel are contiguously expressed in a wide variety of anatomical locations in both the developing embryo and in the adult. In adult gonads, steel is expressed in the follicular cells of the ovary and in Sertoli cells of the testis, the layers that immediately surround the c-kit expressing germ cells. In adult brain, the complementary patterns are particularly striking in the olfactory bulb, cerebral cortex, hippocampus region and cerebellum. steel expression in brain is probably restricted to neurons in certain areas, while c-kit is expressed in neurons and in some glial cells. Severe mutations in the W or Sl loci result in dramatic reduction or absence of c-kit positive cells in lineages known to be affected by these mutations. In contrast, these mutations do not affect the number or histological organization of c-kit positive cells in the embryonic peripheral or central nervous systems, nor is the number or organization of c-kit positive cells detectably altered in Wv/Wv or Sld/Sld adult brain. Taken together, these results suggest that the Kit signaling pathway is not obligatory for the viability and/or migration of most c-kit expressing cells either because of functional redundancy with another signaling pathway or because the Kit pathway is involved in post-developmental processes of mature cells.  相似文献   

8.
Mutations in the dominant-white spotting (W; c-kit) and stem cell factor (Sl; SCF) genes, which encode the transmembrane tyrosine kinase receptor and its ligand, respectively, affect both the proliferation and differentiation of many types of stem cells. Almost all homozygous W or Sl mutant mice are sterile because of the lack of differentiated germ cells or spermatogonial stem cells. To characterize spermatogenesis in c-kit/SCF mutants and to understand the role of c-kit signal transduction in spermatogonial stem cells, the existence, proliferation, and differentiation of spermatogonia were examined in the W/Wv mutant mouse testis. In the present study, some of the W/Wv mutant testes completely lacked spermatogonia, and many of the remaining testes contained only a few spermatogonia. Examination of the proliferative activity of the W/Wv mutant spermatogonia by transplantation of enhanced green fluorescent protein (eGFP)-labeled W/Wv spermatogonia into the seminiferous tubules of normal SCF (W/Wv) or SCF mutant (Sl/Sld) mice demonstrated that the W/Wv spermatogonia had the ability to settle and proliferate, but not to differentiate, in the recipient seminiferous tubules. Although the germ cells in the adult W/Wv testis were c-kit-receptor protein-negative undifferentiated type A spermatogonia, the juvenile germ cells were able to differentiate into spermatogonia that expressed the c-kit-receptor protein. Furthermore, differentiated germ cells with the c-kit-receptor protein on the cell surface could be induced by GnRH antagonist treatment, even in the adult W/Wv testis. These results indicate that all the spermatogonial stem cell characteristics of settlement, proliferation, and differentiation can be demonstrated without stimulating the c-kit-receptor signal. The c-kit/SCF signal transduction system appears to be necessary for the maintenance and proliferation of differentiated c-kit receptor-positive spermatogonia but not for the initial step of spermatogonial cell differentiation.  相似文献   

9.
Several genes/gene products are known to act in a concert to regulate the process of spermatogenesis. One such gene is c-kit, a transmembrane tyrosine kinase receptor which plays an indispensable role in the maturation and differentiation of spermatogonial germ cells (SGCs). In the present study, siRNA approach was used to assess the role of c-kit in survival and proliferation of murine primary SGCs. The effect of different concentrations of anti-c-kit siRNA-1 and siRNA-2 (0.15, 0.315, 0.625, 1.25, 2.50, 5, and 10 nM) on c-kit protein and mRNA expression at post-transfection time (0, 6, 12, 24, 48, and 72 hours) was assessed using an array of techniques such as flow cytometry, ELISA, Western blot, and RT-PCR. Transfection of cells with anti-c-kit siRNAs (0.15-10 nM) at various time points after (0-72 hours) showed significant knockdown c-kit mRNA and protein expression. MTT, Alamar blue assays, and RT-PCR were used to investigate the effects of c-kit silencing on survival, proliferation, distribution, and apoptosis of cells. Experiments were also conducted to determine the effects of c-kit knockdown on cell cycle distribution, DNA laddering, and apoptosis. The results indicated that the transfection with anti-c-kit siRNA induces DNA fragmentation and cell cycle arrest at G(2)/M phase leading to significant reduction in cell viability and proliferation. In addition, enhanced suppression of c-kit protein in P815 cells was observed after transfection as compared to ES-E14TG2alpha cells, suggesting early onset of c-kit protein repression in P815 cells leading to prolongation in cell doubling time. In conclusion, our data provide the first evidence of specific knockdown of c-kit expression in mouse primary SGCs, which emphasizes the critical role played by c-kit in germ cell survival, proliferation, and apoptosis.  相似文献   

10.
Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues.  相似文献   

11.
It is generally believed that during development, neurons are usually produced in excess. Cell death occurs in the developing nervous system. The survival of the developing neurons depends on many factors derived from the target sites, of which the neuronal trophic factors are by far the best known. Stem cell factor (SCF) and its receptor, c-kit, is expressed in cells of nervous system during development and adulthood. Although the role of SCF/c-kit in the nervous system is so far not clear, in vitro studies indicate that SCF/c-kit is trophic to certain neurons derived from neural crest and cerebral cortex. In this study the effects of anti-c-kit antibody on cell death in the newborn chick cerebral cortex have been investigated. Injection of anti-c-kit antibody into the cisterna magnum increased the number of cell death and resulted in thinning of the cerebral cortex as compared to that from the control group. It is concluded that SCF/c-kit is essential for cortical progenitor cell survival in the cerebral cortex. Moreover, this method may be applied to the other factors and different CNS regions, allowing identification of factors involved in cell death. It additionally re-emphasizes the importance of further investigations into the potential roles of SCF/c-kit signaling in neurodegenerative diseases.  相似文献   

12.
The W/c-kit and Steel loci respectively encode a receptor tyrosine kinase (Kit) and its extracellular ligand, Steel factor, which are essential for the development of hematopoietic, melanocyte, and germ cell lineages in the mouse. To determine the biochemical basis of the Steel/W developmental pathway, we have investigated the response of the Kit tyrosine kinase and several potential cytoplasmic targets to stimulation with Steel in mast cells derived from normal and mutant W mice. In normal mast cells, Steel induces Kit to autophosphorylate on tyrosine and bind to phosphatidylinositol 3'-kinase (PI3K) and phospholipase C-gamma 1 but not detectably to Ras GTPase-activating protein. Additionally, we present evidence that Kit tyrosine phosphorylation acts as a switch to promote complex formation with PI3K. In mast cells from mice homozygous for the W42 mutant allele, Kit is not tyrosine phosphorylated and fails to bind PI3K following Steel stimulation. In contrast, in the transformed mast cell line P815, Kit is constitutively phosphorylated and binds to PI3K in the absence of ligand. These results suggest that Kit autophosphorylation and its physical association with a unique subset of cytoplasmic signaling proteins are critical for mammalian development.  相似文献   

13.
14.
E N Geissler  M A Ryan  D E Housman 《Cell》1988,55(1):185-192
Mutations at the W locus in the mouse have pleiotropic effects on embryonic development and hematopoiesis. The characteristic phenotype of mutants at this locus, which includes white coat color, sterility, and anemia, can be attributed to the failure of stem cell populations to migrate and/or proliferate effectively during development. Mapping experiments suggest that the c-kit proto-oncogene, which encodes a putative tyrosine kinase receptor, is a candidate for the W locus. We show here that the c-kit gene is disrupted in two spontaneous mutant W alleles, W44 and Wx. Genomic DNA that encodes amino acids 240 to 342 of the c-kit polypeptide is disrupted in W44; the region encoding amino acids 342 to 791 is disrupted in Wx. W44 homozygotes exhibit a marked reduction in levels of c-kit mRNA. These results strongly support the identification of c-kit as the gene product of the W locus.  相似文献   

15.
16.
The transparency of the juvenile zebrafish and its genetic advantages make it an attractive model for study of cell turnover in the gut. BrdU labelling shows that the gut epithelium is renewed in essentially the same way as in mammals: the villi are lined with non-dividing differentiated cells, while cell division is confined to the intervillus pockets. New cells produced in the pockets take about 4 days to migrate out to the tips of the villi, where they die. We have generated monoclonal antibodies to identify the absorptive and secretory cells in the epithelium, and we have used these antibodies to examine the part that Delta-Notch signalling plays in producing the diversity of intestinal cell types. Several Notch receptors and ligands are expressed in the gut. In particular, the Notch ligand DeltaD (Delta1 in the mouse) is expressed in cells of the secretory lineage. In an aei mutant, where DeltaD is defective, secretory cells are overproduced. In mind bomb (mib), where all Delta-Notch signalling is believed to be blocked, almost all the cells in the 3-day gut epithelium adopt a secretory character. Thus, secretory differentiation appears to be the default in the absence of Notch activation, and lateral inhibition mediated by Delta-Notch signalling is required to generate a balanced mixture of absorptive and secretory cells. These findings demonstrate the central role of Notch signalling in the gut stem-cell system and establish the zebrafish as a model for study of the mechanisms controlling renewal of gut epithelium.  相似文献   

17.
Cytokeratins 8 and 19 in the mouse placental development   总被引:9,自引:0,他引:9  
To investigate the expression and biological roles of cytokeratin 19 (K19) in development and in adult tissues, we inactivated the mouse K19 gene (Krt1-19) by inserting a bacterial beta-galactosidase gene (lacZ) by homologous recombination in embryonic stem cells, and established germ line mutant mice. Both heterozygous and homozygous mutant mice were viable, fertile, and appeared normal. By 7.5-8.0 days post coitum (dpc), heterozygous mutant embryos expressed lacZ in the notochordal plate and hindgut diverticulum, reflecting the fact that the notochord and the gut endoderm are derived from the axial mesoderm-originated cells. In the adult mutant, lacZ was expressed mainly in epithelial tissues. To investigate the possible functional cooperation and synergy between K19 and K8, we then constructed compound homozygous mutants, whose embryos died approximately 10 dpc. The lethality resulted from defects in the placenta where both K19 and K8 are normally expressed. As early as 9. 5 dpc, the compound mutant placenta had an excessive number of giant trophoblasts, but lacked proper labyrinthine trophoblast or spongiotrophoblast development, which apparently caused flooding of the maternal blood into the embryonic placenta. These results indicate that K19 and K8 cooperate in ensuring the normal development of placental tissues.  相似文献   

18.
19.
Murine intraepithelial lymphocytes (IEL) express c-kit, the receptor for stem cell factor (SCF). SCF induced a low but significant proliferative response in IEL, but not in splenic T cells. SCF stimulation of IEL resulted in an expansion of the c-kit(+), TCRgammadelta(+)cell population. SCF-induced proliferation was dependent upon SCF-c-kit interactions, since antibody to c-kit blocked this response, and IEL obtained from c-kit mutant (W/W(v)) mice failed to respond to SCF. SCF acted synergistically with anti-TCRgammadelta and with concavalin A (Con A) to induce proliferation and interferon gamma (IFN-gamma) production in IEL. Finally, mice injected with SCF had a significant increase in the number of IEL in the small intestine. SCF-treated mice had increased numbers of TCRalphabeta(+)and TCRgammadelta(+)cell populations, as well as increased numbers of c-kit(+)and c-kit(-)IEL. These data suggest that SCF-c-kit interactions play an important role in regulating IEL expansion and activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号